# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle.v2 as paddle import paddle.v2.dataset.mnist as mnist import paddle.v2.dataset.flowers as flowers import paddle.v2.dataset.wmt16 as wmt16 import numpy def simple_fc_net(): reader = fluid.layers.open_recordio_file( filename='./mnist.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(4): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss def fc_with_batchnorm(): reader = fluid.layers.open_recordio_file( filename='./mnist.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(1): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) hidden = fluid.layers.batch_norm(input=hidden) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss def squeeze_excitation(input, num_channels, reduction_ratio): # pool = fluid.layers.pool2d( # input=input, pool_size=0, pool_type='avg', global_pooling=True) conv = input shape = conv.shape reshape = fluid.layers.reshape( x=conv, shape=[-1, shape[1], shape[2] * shape[3]]) pool = fluid.layers.reduce_mean(input=reshape, dim=2) squeeze = fluid.layers.fc(input=pool, size=num_channels / reduction_ratio, act='relu') excitation = fluid.layers.fc(input=squeeze, size=num_channels, act='sigmoid') scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return scale def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1, act=None): conv = fluid.layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, stride=stride, padding=(filter_size - 1) / 2, groups=groups, act=None, bias_attr=False) return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1) def shortcut(input, ch_out, stride): ch_in = input.shape[1] if ch_in != ch_out: if stride == 1: filter_size = 1 else: filter_size = 3 return conv_bn_layer(input, ch_out, filter_size, stride) else: return input def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio): # The number of first 1x1 convolutional channels for each bottleneck build block # was halved to reduce the compution cost. conv0 = conv_bn_layer( input=input, num_filters=num_filters, filter_size=1, act='relu') conv1 = conv_bn_layer( input=conv0, num_filters=num_filters * 2, filter_size=3, stride=stride, groups=cardinality, act='relu') conv2 = conv_bn_layer( input=conv1, num_filters=num_filters * 2, filter_size=1, act=None) scale = squeeze_excitation( input=conv2, num_channels=num_filters * 2, reduction_ratio=reduction_ratio) short = shortcut(input, num_filters * 2, stride) return fluid.layers.elementwise_add(x=short, y=scale, act='relu') def SE_ResNeXt152(): reader = fluid.layers.open_recordio_file( filename='./flowers.recordio', shapes=[[-1, 3, 224, 224], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, label = fluid.layers.read_file(reader) conv = conv_bn_layer( input=img, num_filters=64, filter_size=3, stride=2, act='relu') conv = conv_bn_layer( input=conv, num_filters=64, filter_size=3, stride=1, act='relu') conv = conv_bn_layer( input=conv, num_filters=128, filter_size=3, stride=1, act='relu') conv = fluid.layers.pool2d( input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') cardinality = 64 reduction_ratio = 16 depth = [3, 8, 36, 3] num_filters = [128, 256, 512, 1024] for block in range(len(depth)): for i in range(depth[block]): conv = bottleneck_block( input=conv, num_filters=num_filters[block], stride=2 if i == 0 and block != 0 else 1, cardinality=cardinality, reduction_ratio=reduction_ratio) shape = conv.shape reshape = fluid.layers.reshape( x=conv, shape=[-1, shape[1], shape[2] * shape[3]]) pool = fluid.layers.reduce_mean(input=reshape, dim=2) dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2) # Classifier layer: prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss class TestParallelExecutorBase(unittest.TestCase): def check_network_convergence(self, method, memory_opt=True, iter=10): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = method() adam = fluid.optimizer.Adam() adam.minimize(loss) if memory_opt: fluid.memory_optimize(main) exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True) first_loss, = exe.run([loss.name]) first_loss = numpy.array(first_loss) for i in xrange(iter): exe.run([]) last_loss, = exe.run([loss.name]) last_loss = numpy.array(last_loss) print first_loss, last_loss self.assertGreater(first_loss[0], last_loss[0]) class TestMNIST(TestParallelExecutorBase): @classmethod def setUpClass(cls): # Convert mnist to recordio file with fluid.program_guard(fluid.Program(), fluid.Program()): reader = paddle.batch(mnist.train(), batch_size=32) feeder = fluid.DataFeeder( feed_list=[ # order is image and label fluid.layers.data( name='image', shape=[784]), fluid.layers.data( name='label', shape=[1], dtype='int64'), ], place=fluid.CPUPlace()) fluid.recordio_writer.convert_reader_to_recordio_file( './mnist.recordio', reader, feeder) def test_simple_fc(self): self.check_network_convergence(simple_fc_net) def test_batchnorm_fc(self): self.check_network_convergence(fc_with_batchnorm) class TestResnet(TestParallelExecutorBase): @classmethod def setUpClass(cls): with fluid.program_guard(fluid.Program(), fluid.Program()): reader = paddle.batch(flowers.train(), batch_size=4) feeder = fluid.DataFeeder( feed_list=[ fluid.layers.data( name='image', shape=[3, 224, 224]), fluid.layers.data( name='label', shape=[1], dtype='int64'), ], place=fluid.CPUPlace()) fluid.recordio_writer.convert_reader_to_recordio_file( "./flowers.recordio", reader, feeder) def test_resnet(self): self.check_network_convergence(SE_ResNeXt152, iter=200) class ModelHyperParams(object): # Dictionary size for source and target language. This model directly uses # paddle.dataset.wmt16 in which , and token has # alreay been added, but the token is not added. Transformer requires # sequences in a mini-batch are padded to have the same length. A token is # added into the original dictionary in paddle.dateset.wmt16. # size of source word dictionary. src_vocab_size = 10000 # index for token in source language. src_pad_idx = src_vocab_size # size of target word dictionay trg_vocab_size = 10000 # index for token in target language. trg_pad_idx = trg_vocab_size # position value corresponding to the token. pos_pad_idx = 0 # max length of sequences. It should plus 1 to include position # padding token for position encoding. max_length = 50 # the dimension for word embeddings, which is also the last dimension of # the input and output of multi-head attention, position-wise feed-forward # networks, encoder and decoder. d_model = 512 # size of the hidden layer in position-wise feed-forward networks. d_inner_hid = 1024 # the dimension that keys are projected to for dot-product attention. d_key = 64 # the dimension that values are projected to for dot-product attention. d_value = 64 # number of head used in multi-head attention. n_head = 8 # number of sub-layers to be stacked in the encoder and decoder. n_layer = 6 # dropout rate used by all dropout layers. dropout = 0.1 import numpy as np def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): """ Pad the instances to the max sequence length in batch, and generate the corresponding position data and attention bias. Then, convert the numpy data to tensors and return a dict mapping names to tensors. """ def __pad_batch_data(insts, pad_idx, is_target=False, return_pos=True, return_attn_bias=True, return_max_len=True): """ Pad the instances to the max sequence length in batch, and generate the corresponding position data and attention bias. """ return_list = [] max_len = max(len(inst) for inst in insts) inst_data = np.array( [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]) return_list += [inst_data.astype("int64").reshape([-1, 1])] if return_pos: inst_pos = np.array([[ pos_i + 1 if w_i != pad_idx else 0 for pos_i, w_i in enumerate(inst) ] for inst in inst_data]) return_list += [inst_pos.astype("int64").reshape([-1, 1])] if return_attn_bias: if is_target: # This is used to avoid attention on paddings and subsequent # words. slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len)) slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape( [-1, 1, max_len, max_len]) slf_attn_bias_data = np.tile(slf_attn_bias_data, [1, n_head, 1, 1]) * [-1e9] else: # This is used to avoid attention on paddings. slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] * (max_len - len(inst)) for inst in insts]) slf_attn_bias_data = np.tile( slf_attn_bias_data.reshape([-1, 1, 1, max_len]), [1, n_head, max_len, 1]) return_list += [slf_attn_bias_data.astype("float32")] if return_max_len: return_list += [max_len] return return_list if len(return_list) > 1 else return_list[0] def data_to_tensor(data_list, name_list, input_dict, place): assert len(data_list) == len(name_list) for i in range(len(name_list)): tensor = fluid.LoDTensor() tensor.set(data_list[i], place) input_dict[name_list[i]] = tensor src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data( [inst[0] for inst in insts], src_pad_idx, is_target=False) trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data( [inst[1] for inst in insts], trg_pad_idx, is_target=True) trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]).astype("float32") lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False, False, False, False) lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1]) return [ src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias, trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight ] import transformer_model def transformer(): return transformer_model.transformer( ModelHyperParams.src_vocab_size + 1, ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1, ModelHyperParams.n_layer, ModelHyperParams.n_head, ModelHyperParams.d_key, ModelHyperParams.d_value, ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, ModelHyperParams.dropout, ModelHyperParams.src_pad_idx, ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx) class TestTransformer(TestParallelExecutorBase): @classmethod def setUpClass(cls): reader = paddle.batch( wmt16.train(ModelHyperParams.src_vocab_size, ModelHyperParams.trg_vocab_size), batch_size=transformer_model.batch_size) with fluid.recordio_writer.create_recordio_writer( "./wmt16.recordio") as writer: for batch in reader(): for tensor in prepare_batch_input( batch, ModelHyperParams.src_pad_idx, ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head): t = fluid.LoDTensor() t.set(tensor, fluid.CPUPlace()) writer.append_tensor(t) writer.complete_append_tensor() def test_main(self): self.check_network_convergence(transformer)