/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/framework/op_registry.h" #include "paddle/framework/variable.h" namespace paddle { namespace operators { #define CLOG std::cout const std::string kForward = "FORWARD"; const std::string kBackward = "BACKWARD"; const std::string kBoth = "BOTH"; struct Formater { std::string message; std::string name; std::vector dims; std::type_index dtype{typeid(char)}; framework::LoD lod; int summarize; void* data{nullptr}; void operator()(size_t size) { PrintMessage(); PrintName(); PrintDims(); PrintDtype(); PrintLod(); PrintData(size); } private: void PrintMessage() { CLOG << std::time(nullptr) << "\t" << message; } void PrintName() { if (!name.empty()) { CLOG << "Tensor[" << name << "]" << std::endl; } } void PrintDims() { if (!dims.empty()) { CLOG << "\tshape: ["; for (auto i : dims) { CLOG << i << ","; } CLOG << "]" << std::endl; } } void PrintDtype() { if (dtype.hash_code() != typeid(char).hash_code()) { CLOG << "\tdtype: " << dtype.name() << std::endl; } } void PrintLod() { if (!lod.empty()) { CLOG << "\tLoD: ["; for (auto level : lod) { CLOG << "[ "; for (auto i : level) { CLOG << i << ","; } CLOG << " ]"; } CLOG << "]" << std::endl; } } void PrintData(size_t size) { PADDLE_ENFORCE_NOT_NULL(data); // print float if (dtype.hash_code() == typeid(float).hash_code()) { Display(size); } if (dtype.hash_code() == typeid(double).hash_code()) { Display(size); } if (dtype.hash_code() == typeid(int).hash_code()) { Display(size); } if (dtype.hash_code() == typeid(int64_t).hash_code()) { Display(size); } } template void Display(size_t size) { auto* d = (T*)data; CLOG << "\tdata: "; if (summarize != -1) { summarize = std::min(size, (size_t)summarize); for (int i = 0; i < summarize; i++) { CLOG << d[i] << ","; } } else { for (size_t i = 0; i < size; i++) { CLOG << d[i] << ","; } } CLOG << std::endl; } }; // TODO(ChunweiYan) there should be some other printers for TensorArray class TensorPrintOp : public framework::OperatorBase { public: TensorPrintOp(const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} TensorPrintOp(const TensorPrintOp& o) : framework::OperatorBase( static_cast(o)) { PADDLE_THROW("Not implemented."); } private: void RunImpl(const framework::Scope& scope, const platform::Place& place) const override { const framework::Variable* in_var_ptr = nullptr; std::string phase = kForward; std::string printed_var_name = ""; auto& inputs = Inputs(); if (inputs.find("In") != inputs.end() && !Inputs("In").empty()) { in_var_ptr = scope.FindVar(Input("In")); printed_var_name = Inputs("In").front(); } else if (inputs.find("In@GRAD") != inputs.end() && !Inputs("In@GRAD").empty()) { in_var_ptr = scope.FindVar(Input("In@GRAD")); printed_var_name = Inputs("In@GRAD").front(); phase = kBackward; } else { PADDLE_THROW("Unknown phase, should be forward or backward."); } PADDLE_ENFORCE_NOT_NULL(in_var_ptr); auto& in_tensor = in_var_ptr->Get(); auto* out_var_ptr = scope.FindVar(Output("Out")); auto& out_tensor = *out_var_ptr->GetMutable(); // Just copy data from input tensor to output tensor // output tensor share same memory with input tensor out_tensor.ShareDataWith(in_tensor); out_tensor.set_lod(in_tensor.lod()); std::string print_phase = Attr("print_phase"); if (print_phase != phase && print_phase != kBoth) { return; } int first_n = Attr("first_n"); if (first_n > 0 && ++times_ > first_n) return; framework::LoDTensor printed_tensor; printed_tensor.set_lod(in_tensor.lod()); printed_tensor.Resize(in_tensor.dims()); if (platform::is_cpu_place(in_tensor.place())) { printed_tensor.ShareDataWith(in_tensor); } else { // copy data to cpu to print platform::CPUPlace place; framework::Copy(in_tensor, place, &printed_tensor); } Formater formater; if (Attr("print_tensor_name")) { formater.name = printed_var_name; } if (Attr("print_tensor_type")) { formater.dtype = printed_tensor.type(); } if (Attr("print_tensor_shape")) { auto& dims = printed_tensor.dims(); formater.dims.resize(dims.size()); for (int i = 0; i < dims.size(); ++i) formater.dims[i] = dims[i]; } if (Attr("print_tensor_lod")) { formater.lod = printed_tensor.lod(); } formater.summarize = Attr("summarize"); formater.data = (void*)printed_tensor.data(); formater(printed_tensor.numel()); } private: mutable int times_{0}; }; class PrintOpProtoAndCheckMaker : public framework::OpProtoAndCheckerMaker { public: PrintOpProtoAndCheckMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("In", "Input tensor to be displayed."); AddAttr("first_n", "Only log `first_n` number of times."); AddAttr("message", "A string message to print as a prefix."); AddAttr("summarize", "Number of elements printed."); AddAttr("print_tensor_name", "Whether to print the tensor name."); AddAttr("print_tensor_type", "Whether to print the tensor's dtype."); AddAttr("print_tensor_shape", "Whether to print the tensor's shape."); AddAttr("print_tensor_lod", "Whether to print the tensor's lod."); AddAttr( "print_phase", "(string, default 'BOTH') Which phase to display including 'FORWARD' " "'BACKWARD' and 'BOTH'.") .SetDefault(kBoth) .InEnum({kForward, kBackward, kBoth}); AddOutput("Out", "Output tensor with same data as input tensor."); AddComment(R"DOC( Creates a print op that will print when a tensor is accessed. Wraps the tensor passed in so that whenever that a tensor is accessed, the message `message` is printed, along with the current value of the tensor `t`.)DOC"); } }; class InferShapeForward : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext* context) const override { PADDLE_ENFORCE(context->HasInput("In"), "Input(In) should not be null."); context->ShareLoD("In", /*->*/ "Out"); context->SetOutputDim("Out", context->GetInputDim("In")); } }; class InferShapeBackward : public framework::InferShapeBase { public: void operator()(framework::InferShapeContext* context) const override { PADDLE_ENFORCE(context->HasInput("In@GRAD"), "Input(In@GRAD) should not be null."); context->ShareLoD("In@GRAD", /*->*/ "Out"); context->SetOutputDim("Out", context->GetInputDim("In@GRAD")); } }; class InferVarType : public framework::VarTypeInference { public: void operator()(const framework::OpDesc& op_desc, framework::BlockDesc* block) const override {} }; class PrintOpProtoAndCheckGradOpMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; std::unique_ptr Apply() const override { auto* op_desc_ptr = new framework::OpDesc(); op_desc_ptr->SetType("print_grad"); op_desc_ptr->SetInput("In@GRAD", OutputGrad("Out")); op_desc_ptr->SetOutput("Out", InputGrad("In")); op_desc_ptr->SetAttrMap(Attrs()); return std::unique_ptr(op_desc_ptr); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(print, ops::TensorPrintOp, ops::PrintOpProtoAndCheckMaker, ops::PrintOpProtoAndCheckGradOpMaker, ops::InferShapeForward, ops::InferVarType); REGISTER_OPERATOR(print_grad, ops::TensorPrintOp, ops::InferShapeBackward);