/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/unpooling.h" namespace paddle { namespace operators { template class UnpoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const framework::Tensor* in_x = context.Input("X"); const framework::Tensor* in_y = context.Input("Indices"); auto* out = context.Output("Out"); std::string unpooling_type = context.Attr("unpooling_type"); std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); T* output_data = out->mutable_data(context.GetPlace()); auto& dev_ctx = context.template device_context(); if (output_data) { math::SetConstant set_zero; set_zero(dev_ctx, out, static_cast(0)); } math::Unpool2dMaxFunctor unpool2d_max_forward; unpool2d_max_forward(dev_ctx, *in_x, *in_y, out); } }; template class UnpoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const framework::Tensor* in_x = context.Input("X"); const framework::Tensor* in_y = context.Input("Indices"); const framework::Tensor* out = context.Input("Out"); const framework::Tensor* out_grad = context.Input(framework::GradVarName("Out")); framework::Tensor* in_x_grad = context.Output(framework::GradVarName("X")); std::string unpooling_type = context.Attr("unpooling_type"); std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); auto& device_ctx = context.template device_context(); math::SetConstant zero; if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0)); } math::Unpool2dMaxGradFunctor unpool2d_max_backward; unpool2d_max_backward(device_ctx, *in_x, *in_y, *out, *out_grad, in_x_grad); } }; } // namespace operators } // namespace paddle