# PP-Human检测跟踪模块
行人检测与跟踪在智慧社区,工业巡检,交通监控等方向都具有广泛应用,PP-Human中集成了检测跟踪模块,是关键点检测、属性行为识别等任务的基础。我们提供了预训练模型,用户可以直接下载使用。
| 任务 | 算法 | 精度 | 预测速度(ms) |下载链接 |
|:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: |
| 行人检测/跟踪 | PP-YOLOE | mAP: 56.3
MOTA: 72.0 | 检测: 28ms
跟踪:33.1ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
1. 检测/跟踪模型精度为MOT17,CrowdHuman,HIEVE和部分业务数据融合训练测试得到
2. 预测速度为T4 机器上使用TensorRT FP16时的速度
## 使用方法
1. 从上表链接中下载模型并解压到```./output_inference```路径下
2. 图片输入时,启动命令如下
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
--image_file=test_image.jpg \
--device=gpu
```
3. 视频输入时,启动命令如下
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
--video_file=test_video.mp4 \
--device=gpu
```
4. 若修改模型路径,有以下两种方式:
- ```./deploy/pphuman/config/infer_cfg.yml```下可以配置不同模型路径,检测和跟踪模型分别对应`DET`和`MOT`字段,修改对应字段下的路径为实际期望的路径即可。
- 命令行中增加`--model_dir`修改模型路径:
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
--video_file=test_video.mp4 \
--device=gpu \
--model_dir det=ppyoloe/
--do_entrance_counting \
--draw_center_traj
```
**注意:**
- `--do_entrance_counting`表示是否统计出入口流量,不设置即默认为False,`--draw_center_traj`表示是否绘制跟踪轨迹,不设置即默认为False。注意绘制跟踪轨迹的测试视频最好是静止摄像头拍摄的。
测试效果如下: