# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import sys import math from collections import defaultdict from motmetrics.math_util import quiet_divide import numpy as np import pandas as pd import paddle import paddle.nn.functional as F from .metrics import Metric import motmetrics as mm import openpyxl metrics = mm.metrics.motchallenge_metrics mh = mm.metrics.create() from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['MCMOTEvaluator', 'MCMOTMetric'] METRICS_LIST = [ 'num_frames', 'num_matches', 'num_switches', 'num_transfer', 'num_ascend', 'num_migrate', 'num_false_positives', 'num_misses', 'num_detections', 'num_objects', 'num_predictions', 'num_unique_objects', 'mostly_tracked', 'partially_tracked', 'mostly_lost', 'num_fragmentations', 'motp', 'mota', 'precision', 'recall', 'idfp', 'idfn', 'idtp', 'idp', 'idr', 'idf1' ] NAME_MAP = { 'num_frames': 'num_frames', 'num_matches': 'num_matches', 'num_switches': 'IDs', 'num_transfer': 'IDt', 'num_ascend': 'IDa', 'num_migrate': 'IDm', 'num_false_positives': 'FP', 'num_misses': 'FN', 'num_detections': 'num_detections', 'num_objects': 'num_objects', 'num_predictions': 'num_predictions', 'num_unique_objects': 'GT', 'mostly_tracked': 'MT', 'partially_tracked': 'partially_tracked', 'mostly_lost': 'ML', 'num_fragmentations': 'FM', 'motp': 'MOTP', 'mota': 'MOTA', 'precision': 'Prcn', 'recall': 'Rcll', 'idfp': 'idfp', 'idfn': 'idfn', 'idtp': 'idtp', 'idp': 'IDP', 'idr': 'IDR', 'idf1': 'IDF1' } def parse_accs_metrics(seq_acc, index_name, verbose=False): """ Parse the evaluation indicators of multiple MOTAccumulator """ mh = mm.metrics.create() summary = MCMOTEvaluator.get_summary(seq_acc, index_name, METRICS_LIST) summary.loc['OVERALL', 'motp'] = (summary['motp'] * summary['num_detections']).sum() / \ summary.loc['OVERALL', 'num_detections'] if verbose: strsummary = mm.io.render_summary( summary, formatters=mh.formatters, namemap=NAME_MAP) print(strsummary) return summary def seqs_overall_metrics(summary_df, verbose=False): """ Calculate overall metrics for multiple sequences """ add_col = [ 'num_frames', 'num_matches', 'num_switches', 'num_transfer', 'num_ascend', 'num_migrate', 'num_false_positives', 'num_misses', 'num_detections', 'num_objects', 'num_predictions', 'num_unique_objects', 'mostly_tracked', 'partially_tracked', 'mostly_lost', 'num_fragmentations', 'idfp', 'idfn', 'idtp' ] calc_col = ['motp', 'mota', 'precision', 'recall', 'idp', 'idr', 'idf1'] calc_df = summary_df.copy() overall_dic = {} for col in add_col: overall_dic[col] = calc_df[col].sum() for col in calc_col: overall_dic[col] = getattr(MCMOTMetricOverall, col + '_overall')( calc_df, overall_dic) overall_df = pd.DataFrame(overall_dic, index=['overall_calc']) calc_df = pd.concat([calc_df, overall_df]) if verbose: mh = mm.metrics.create() str_calc_df = mm.io.render_summary( calc_df, formatters=mh.formatters, namemap=NAME_MAP) print(str_calc_df) return calc_df class MCMOTMetricOverall(object): def motp_overall(summary_df, overall_dic): motp = quiet_divide((summary_df['motp'] * summary_df['num_detections']).sum(), overall_dic['num_detections']) return motp def mota_overall(summary_df, overall_dic): del summary_df mota = 1. - quiet_divide( (overall_dic['num_misses'] + overall_dic['num_switches'] + overall_dic['num_false_positives']), overall_dic['num_objects']) return mota def precision_overall(summary_df, overall_dic): del summary_df precision = quiet_divide(overall_dic['num_detections'], ( overall_dic['num_false_positives'] + overall_dic['num_detections'])) return precision def recall_overall(summary_df, overall_dic): del summary_df recall = quiet_divide(overall_dic['num_detections'], overall_dic['num_objects']) return recall def idp_overall(summary_df, overall_dic): del summary_df idp = quiet_divide(overall_dic['idtp'], (overall_dic['idtp'] + overall_dic['idfp'])) return idp def idr_overall(summary_df, overall_dic): del summary_df idr = quiet_divide(overall_dic['idtp'], (overall_dic['idtp'] + overall_dic['idfn'])) return idr def idf1_overall(summary_df, overall_dic): del summary_df idf1 = quiet_divide(2. * overall_dic['idtp'], ( overall_dic['num_objects'] + overall_dic['num_predictions'])) return idf1 def read_mcmot_results_union(filename, is_gt, is_ignore): results_dict = dict() if os.path.isfile(filename): all_result = np.loadtxt(filename, delimiter=',') if all_result.shape[0] == 0 or all_result.shape[1] < 7: return results_dict if is_ignore: return results_dict if is_gt: # only for test use all_result = all_result[all_result[:, 7] != 0] all_result[:, 7] = all_result[:, 7] - 1 if all_result.shape[0] == 0: return results_dict class_unique = np.unique(all_result[:, 7]) last_max_id = 0 result_cls_list = [] for cls in class_unique: result_cls_split = all_result[all_result[:, 7] == cls] result_cls_split[:, 1] = result_cls_split[:, 1] + last_max_id # make sure track id different between every category last_max_id = max(np.unique(result_cls_split[:, 1])) + 1 result_cls_list.append(result_cls_split) results_con = np.concatenate(result_cls_list) for line in range(len(results_con)): linelist = results_con[line] fid = int(linelist[0]) if fid < 1: continue results_dict.setdefault(fid, list()) if is_gt: score = 1 else: score = float(linelist[6]) tlwh = tuple(map(float, linelist[2:6])) target_id = int(linelist[1]) cls = int(linelist[7]) results_dict[fid].append((tlwh, target_id, cls, score)) return results_dict def read_mcmot_results(filename, is_gt, is_ignore): results_dict = dict() if os.path.isfile(filename): with open(filename, 'r') as f: for line in f.readlines(): linelist = line.strip().split(',') if len(linelist) < 7: continue fid = int(linelist[0]) if fid < 1: continue cid = int(linelist[7]) if is_gt: score = 1 # only for test use cid -= 1 else: score = float(linelist[6]) cls_result_dict = results_dict.setdefault(cid, dict()) cls_result_dict.setdefault(fid, list()) tlwh = tuple(map(float, linelist[2:6])) target_id = int(linelist[1]) cls_result_dict[fid].append((tlwh, target_id, score)) return results_dict def read_results(filename, data_type, is_gt=False, is_ignore=False, multi_class=False, union=False): if data_type in ['mcmot', 'lab']: if multi_class: if union: # The results are evaluated by union all the categories. # Track IDs between different categories cannot be duplicate. read_fun = read_mcmot_results_union else: # The results are evaluated separately by category. read_fun = read_mcmot_results else: raise ValueError('multi_class: {}, MCMOT should have cls_id.'. format(multi_class)) else: raise ValueError('Unknown data type: {}'.format(data_type)) return read_fun(filename, is_gt, is_ignore) def unzip_objs(objs): if len(objs) > 0: tlwhs, ids, scores = zip(*objs) else: tlwhs, ids, scores = [], [], [] tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4) return tlwhs, ids, scores def unzip_objs_cls(objs): if len(objs) > 0: tlwhs, ids, cls, scores = zip(*objs) else: tlwhs, ids, cls, scores = [], [], [], [] tlwhs = np.asarray(tlwhs, dtype=float).reshape(-1, 4) ids = np.array(ids) cls = np.array(cls) scores = np.array(scores) return tlwhs, ids, cls, scores class MCMOTEvaluator(object): def __init__(self, data_root, seq_name, data_type, num_classes): self.data_root = data_root self.seq_name = seq_name self.data_type = data_type self.num_classes = num_classes self.load_annotations() self.reset_accumulator() self.class_accs = [] def load_annotations(self): assert self.data_type == 'mcmot' self.gt_filename = os.path.join(self.data_root, '../', '../', 'sequences', '{}.txt'.format(self.seq_name)) def reset_accumulator(self): import motmetrics as mm mm.lap.default_solver = 'lap' self.acc = mm.MOTAccumulator(auto_id=True) def eval_frame_dict(self, trk_objs, gt_objs, rtn_events=False, union=False): import motmetrics as mm mm.lap.default_solver = 'lap' if union: trk_tlwhs, trk_ids, trk_cls = unzip_objs_cls(trk_objs)[:3] gt_tlwhs, gt_ids, gt_cls = unzip_objs_cls(gt_objs)[:3] # get distance matrix iou_distance = mm.distances.iou_matrix( gt_tlwhs, trk_tlwhs, max_iou=0.5) # Set the distance between objects of different categories to nan gt_cls_len = len(gt_cls) trk_cls_len = len(trk_cls) # When the number of GT or Trk is 0, iou_distance dimension is (0,0) if gt_cls_len != 0 and trk_cls_len != 0: gt_cls = gt_cls.reshape(gt_cls_len, 1) gt_cls = np.repeat(gt_cls, trk_cls_len, axis=1) trk_cls = trk_cls.reshape(1, trk_cls_len) trk_cls = np.repeat(trk_cls, gt_cls_len, axis=0) iou_distance = np.where(gt_cls == trk_cls, iou_distance, np.nan) else: trk_tlwhs, trk_ids = unzip_objs(trk_objs)[:2] gt_tlwhs, gt_ids = unzip_objs(gt_objs)[:2] # get distance matrix iou_distance = mm.distances.iou_matrix( gt_tlwhs, trk_tlwhs, max_iou=0.5) self.acc.update(gt_ids, trk_ids, iou_distance) if rtn_events and iou_distance.size > 0 and hasattr(self.acc, 'mot_events'): events = self.acc.mot_events # only supported by https://github.com/longcw/py-motmetrics else: events = None return events def eval_file(self, result_filename): # evaluation of each category gt_frame_dict = read_results( self.gt_filename, self.data_type, is_gt=True, multi_class=True, union=False) result_frame_dict = read_results( result_filename, self.data_type, is_gt=False, multi_class=True, union=False) for cid in range(self.num_classes): self.reset_accumulator() cls_result_frame_dict = result_frame_dict.setdefault(cid, dict()) cls_gt_frame_dict = gt_frame_dict.setdefault(cid, dict()) # only labeled frames will be evaluated frames = sorted(list(set(cls_gt_frame_dict.keys()))) for frame_id in frames: trk_objs = cls_result_frame_dict.get(frame_id, []) gt_objs = cls_gt_frame_dict.get(frame_id, []) self.eval_frame_dict(trk_objs, gt_objs, rtn_events=False) self.class_accs.append(self.acc) return self.class_accs @staticmethod def get_summary(accs, names, metrics=('mota', 'num_switches', 'idp', 'idr', 'idf1', 'precision', 'recall')): import motmetrics as mm mm.lap.default_solver = 'lap' names = copy.deepcopy(names) if metrics is None: metrics = mm.metrics.motchallenge_metrics metrics = copy.deepcopy(metrics) mh = mm.metrics.create() summary = mh.compute_many( accs, metrics=metrics, names=names, generate_overall=True) return summary @staticmethod def save_summary(summary, filename): import pandas as pd writer = pd.ExcelWriter(filename) summary.to_excel(writer) writer.save() class MCMOTMetric(Metric): def __init__(self, num_classes, save_summary=False): self.num_classes = num_classes self.save_summary = save_summary self.MCMOTEvaluator = MCMOTEvaluator self.result_root = None self.reset() self.seqs_overall = defaultdict(list) def reset(self): self.accs = [] self.seqs = [] def update(self, data_root, seq, data_type, result_root, result_filename): evaluator = self.MCMOTEvaluator(data_root, seq, data_type, self.num_classes) seq_acc = evaluator.eval_file(result_filename) self.accs.append(seq_acc) self.seqs.append(seq) self.result_root = result_root cls_index_name = [ '{}_{}'.format(seq, i) for i in range(self.num_classes) ] summary = parse_accs_metrics(seq_acc, cls_index_name) summary.rename( index={'OVERALL': '{}_OVERALL'.format(seq)}, inplace=True) for row in range(len(summary)): self.seqs_overall[row].append(summary.iloc[row:row + 1]) def accumulate(self): self.cls_summary_list = [] for row in range(self.num_classes): seqs_cls_df = pd.concat(self.seqs_overall[row]) seqs_cls_summary = seqs_overall_metrics(seqs_cls_df) cls_summary_overall = seqs_cls_summary.iloc[-1:].copy() cls_summary_overall.rename( index={'overall_calc': 'overall_calc_{}'.format(row)}, inplace=True) self.cls_summary_list.append(cls_summary_overall) def log(self): seqs_summary = seqs_overall_metrics( pd.concat(self.seqs_overall[self.num_classes]), verbose=True) class_summary = seqs_overall_metrics( pd.concat(self.cls_summary_list), verbose=True) def get_results(self): return 1