简体中文 | [English](README.md)
# JDE (Joint Detection and Embedding)
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [快速开始](#快速开始)
- [引用](#引用)
## 内容
[JDE](https://arxiv.org/abs/1909.12605) (Joint Detection and Embedding)是一个快速高性能多目标跟踪器,它是在共享神经网络中同时学习目标检测任务和外观嵌入任务的。
## 模型库
### JDE在MOT-16 Training Set上结果
| 骨干网络 | 输入尺寸 | MOTA | IDF1 | IDS | FP | FN | FPS | 检测模型 | 配置文件 |
| :----------------- | :------- | :----: | :----: | :---: | :----: | :---: | :---: | :---: | :---: |
| DarkNet53 | 1088x608 | 73.2 | 69.3 | 1351 | 6591 | 21625 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/mot/jde/jde_darknet53_30e_1088x608.yml) |
| DarkNet53 | 864x480 | 70.1 | 65.2 | 1328 | 6441 | 25187 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_864x480.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/mot/jde/jde_darknet53_30e_864x480.yml) |
| DarkNet53 | 576x320 | 63.2 | 64.5 | 1308 | 7011 | 32252 | - |[下载链接](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_576x320.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.1/configs/mot/jde/jde_darknet53_30e_576x320.yml) |
**注意:**
JDE使用8个GPU进行训练,每个GPU上batch size为4,训练了30个epoch。
## 快速开始
### 1. 训练
使用8GPU通过如下命令一键式启动训练
```bash
python -m paddle.distributed.launch --log_dir=./jde_darknet53_30e_1088x608/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml
```
### 2. 评估
使用8GPU通过如下命令一键式启动评估
```bash
# 使用PaddleDetection发布的权重
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams
# 使用训练保存的checkpoint
CUDA_VISIBLE_DEVICES=0 python tools/eval_mot.py -c configs/mot/jde/jde_darknet53_30e_1088x608.yml -o weights=output/jde_darknet53_30e_1088x608/model_final.pdparams
```
## 引用
```
@article{wang2019towards,
title={Towards Real-Time Multi-Object Tracking},
author={Wang, Zhongdao and Zheng, Liang and Liu, Yixuan and Wang, Shengjin},
journal={arXiv preprint arXiv:1909.12605},
year={2019}
}
```