# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) from ppdet.utils.logger import setup_logger logger = setup_logger('ppdet.anchor_cluster') from scipy.cluster.vq import kmeans import numpy as np from tqdm import tqdm from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.core.workspace import load_config, merge_config class BaseAnchorCluster(object): def __init__(self, n, cache_path, cache, verbose=True): """ Base Anchor Cluster Args: n (int): number of clusters cache_path (str): cache directory path cache (bool): whether using cache verbose (bool): whether print results """ super(BaseAnchorCluster, self).__init__() self.n = n self.cache_path = cache_path self.cache = cache self.verbose = verbose def print_result(self, centers): raise NotImplementedError('%s.print_result is not available' % self.__class__.__name__) def get_whs(self): whs_cache_path = os.path.join(self.cache_path, 'whs.npy') shapes_cache_path = os.path.join(self.cache_path, 'shapes.npy') if self.cache and os.path.exists(whs_cache_path) and os.path.exists( shapes_cache_path): self.whs = np.load(whs_cache_path) self.shapes = np.load(shapes_cache_path) return self.whs, self.shapes whs = np.zeros((0, 2)) shapes = np.zeros((0, 2)) self.dataset.parse_dataset() roidbs = self.dataset.roidbs for rec in tqdm(roidbs): h, w = rec['h'], rec['w'] bbox = rec['gt_bbox'] wh = bbox[:, 2:4] - bbox[:, 0:2] + 1 wh = wh / np.array([[w, h]]) shape = np.ones_like(wh) * np.array([[w, h]]) whs = np.vstack((whs, wh)) shapes = np.vstack((shapes, shape)) if self.cache: os.makedirs(self.cache_path, exist_ok=True) np.save(whs_cache_path, whs) np.save(shapes_cache_path, shapes) self.whs = whs self.shapes = shapes return self.whs, self.shapes def calc_anchors(self): raise NotImplementedError('%s.calc_anchors is not available' % self.__class__.__name__) def __call__(self): self.get_whs() centers = self.calc_anchors() if self.verbose: self.print_result(centers) return centers class YOLOv2AnchorCluster(BaseAnchorCluster): def __init__(self, n, dataset, size, cache_path, cache, iters=1000, verbose=True): super(YOLOv2AnchorCluster, self).__init__( n, cache_path, cache, verbose=verbose) """ YOLOv2 Anchor Cluster Reference: https://github.com/AlexeyAB/darknet/blob/master/scripts/gen_anchors.py Args: n (int): number of clusters dataset (DataSet): DataSet instance, VOC or COCO size (list): [w, h] cache_path (str): cache directory path cache (bool): whether using cache iters (int): kmeans algorithm iters verbose (bool): whether print results """ self.dataset = dataset self.size = size self.iters = iters def print_result(self, centers): logger.info('%d anchor cluster result: [w, h]' % self.n) for w, h in centers: logger.info('[%d, %d]' % (round(w), round(h))) def metric(self, whs, centers): wh1 = whs[:, None] wh2 = centers[None] inter = np.minimum(wh1, wh2).prod(2) return inter / (wh1.prod(2) + wh2.prod(2) - inter) def kmeans_expectation(self, whs, centers, assignments): dist = self.metric(whs, centers) new_assignments = dist.argmax(1) converged = (new_assignments == assignments).all() return converged, new_assignments def kmeans_maximizations(self, whs, centers, assignments): new_centers = np.zeros_like(centers) for i in range(centers.shape[0]): mask = (assignments == i) if mask.sum(): new_centers[i, :] = whs[mask].mean(0) return new_centers def calc_anchors(self): self.whs = self.whs * np.array([self.size]) # random select k centers whs, n, iters = self.whs, self.n, self.iters logger.info('Running kmeans for %d anchors on %d points...' % (n, len(whs))) idx = np.random.choice(whs.shape[0], size=n, replace=False) centers = whs[idx] assignments = np.zeros(whs.shape[0:1]) * -1 # kmeans if n == 1: return self.kmeans_maximizations(whs, centers, assignments) pbar = tqdm(range(iters), desc='Cluster anchors with k-means algorithm') for _ in pbar: # E step converged, assignments = self.kmeans_expectation(whs, centers, assignments) if converged: logger.info('kmeans algorithm has converged') break # M step centers = self.kmeans_maximizations(whs, centers, assignments) ious = self.metric(whs, centers) pbar.desc = 'avg_iou: %.4f' % (ious.max(1).mean()) centers = sorted(centers, key=lambda x: x[0] * x[1]) return centers class YOLOv5AnchorCluster(BaseAnchorCluster): def __init__(self, n, dataset, size, cache_path, cache, iters=300, gen_iters=1000, thresh=0.25, verbose=True): super(YOLOv5AnchorCluster, self).__init__( n, cache_path, cache, verbose=verbose) """ YOLOv5 Anchor Cluster Reference: https://github.com/ultralytics/yolov5/blob/master/utils/general.py Args: n (int): number of clusters dataset (DataSet): DataSet instance, VOC or COCO size (list): [w, h] cache_path (str): cache directory path cache (bool): whether using cache iters (int): iters of kmeans algorithm gen_iters (int): iters of genetic algorithm threshold (float): anchor scale threshold verbose (bool): whether print results """ self.dataset = dataset self.size = size self.iters = iters self.gen_iters = gen_iters self.thresh = thresh def print_result(self, centers): whs = self.whs centers = centers[np.argsort(centers.prod(1))] x, best = self.metric(whs, centers) bpr, aat = ( best > self.thresh).mean(), (x > self.thresh).mean() * self.n logger.info( 'thresh=%.2f: %.4f best possible recall, %.2f anchors past thr' % (self.thresh, bpr, aat)) logger.info( 'n=%g, img_size=%s, metric_all=%.3f/%.3f-mean/best, past_thresh=%.3f-mean: ' % (self.n, self.size, x.mean(), best.mean(), x[x > self.thresh].mean())) logger.info('%d anchor cluster result: [w, h]' % self.n) for w, h in centers: logger.info('[%d, %d]' % (round(w), round(h))) def metric(self, whs, centers): r = whs[:, None] / centers[None] x = np.minimum(r, 1. / r).min(2) return x, x.max(1) def fitness(self, whs, centers): _, best = self.metric(whs, centers) return (best * (best > self.thresh)).mean() def calc_anchors(self): self.whs = self.whs * self.shapes / self.shapes.max( 1, keepdims=True) * np.array([self.size]) wh0 = self.whs i = (wh0 < 3.0).any(1).sum() if i: logger.warning('Extremely small objects found. %d of %d' 'labels are < 3 pixels in width or height' % (i, len(wh0))) wh = wh0[(wh0 >= 2.0).any(1)] logger.info('Running kmeans for %g anchors on %g points...' % (self.n, len(wh))) s = wh.std(0) centers, dist = kmeans(wh / s, self.n, iter=self.iters) centers *= s f, sh, mp, s = self.fitness(wh, centers), centers.shape, 0.9, 0.1 pbar = tqdm( range(self.gen_iters), desc='Evolving anchors with Genetic Algorithm') for _ in pbar: v = np.ones(sh) while (v == 1).all(): v = ((np.random.random(sh) < mp) * np.random.random() * np.random.randn(*sh) * s + 1).clip(0.3, 3.0) new_centers = (centers.copy() * v).clip(min=2.0) new_f = self.fitness(wh, new_centers) if new_f > f: f, centers = new_f, new_centers.copy() pbar.desc = 'Evolving anchors with Genetic Algorithm: fitness = %.4f' % f return centers def main(): parser = ArgsParser() parser.add_argument( '--n', '-n', default=9, type=int, help='num of clusters') parser.add_argument( '--iters', '-i', default=1000, type=int, help='num of iterations for kmeans') parser.add_argument( '--gen_iters', '-gi', default=1000, type=int, help='num of iterations for genetic algorithm') parser.add_argument( '--thresh', '-t', default=0.25, type=float, help='anchor scale threshold') parser.add_argument( '--verbose', '-v', default=True, type=bool, help='whether print result') parser.add_argument( '--size', '-s', default=None, type=str, help='image size: w,h, using comma as delimiter') parser.add_argument( '--method', '-m', default='v2', type=str, help='cluster method, [v2, v5] are supported now') parser.add_argument( '--cache_path', default='cache', type=str, help='cache path') parser.add_argument( '--cache', action='store_true', help='whether use cache') FLAGS = parser.parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() # get dataset dataset = cfg['TrainDataset'] if FLAGS.size: if ',' in FLAGS.size: size = list(map(int, FLAGS.size.split(','))) assert len(size) == 2, "the format of size is incorrect" else: size = int(FLAGS.size) size = [size, size] elif 'inputs_def' in cfg['TrainReader'] and 'image_shape' in cfg[ 'TrainReader']['inputs_def']: size = cfg['TrainReader']['inputs_def']['image_shape'][1:] else: raise ValueError('size is not specified') if FLAGS.method == 'v2': cluster = YOLOv2AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path, FLAGS.cache, FLAGS.iters, FLAGS.verbose) elif FLAGS.method == 'v5': cluster = YOLOv5AnchorCluster(FLAGS.n, dataset, size, FLAGS.cache_path, FLAGS.cache, FLAGS.iters, FLAGS.gen_iters, FLAGS.thresh, FLAGS.verbose) else: raise ValueError('cluster method: %s is not supported' % FLAGS.method) anchors = cluster() if __name__ == "__main__": main()