// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include "paddle/fluid/framework/details/computation_op_handle.h" #include "paddle/fluid/framework/details/eager_deletion_op_handle.h" #include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/op_graph_view.h" #include "paddle/fluid/framework/details/reference_count_pass.h" #include "paddle/fluid/framework/details/reference_count_pass_helper.h" #include "paddle/fluid/framework/ir/graph_helper.h" namespace paddle { namespace framework { namespace details { // A functor to shrink/remove operators who depend on other operators in a set class ShrinkDepsOpFunctor { private: enum RelationShip { kSame = 0, kNoDeps = 1, kBefore = 2, kAfter = 3 }; public: explicit ShrinkDepsOpFunctor(const std::vector &all_ops) : graph_(all_ops) {} template OpSet operator()(const OpSet &op_set) const { using KeyType = typename OpSet::key_type; static_assert( std::is_base_of::type>::value, "Key type of OpSet must be OpHandleBase, or derived of OpHandleBase"); if (op_set.size() <= 1) return op_set; std::vector ops(op_set.begin(), op_set.end()); OpSet ret; auto rels = GetRelations(ops); auto not_before = [](RelationShip r) { return r != kBefore; }; for (size_t i = 0; i < rels.size(); ++i) { if (std::all_of(rels[i].begin(), rels[i].end(), not_before)) { ret.emplace(static_cast(ops[i])); } } return ret; } private: std::vector> GetRelations( const std::vector &ops) const { std::unordered_map op_to_idx; for (size_t i = 0; i < ops.size(); ++i) { PADDLE_ENFORCE(graph_.HasOp(ops[i]), "Op does not exist in graph"); op_to_idx[ops[i]] = i; } PADDLE_ENFORCE(op_to_idx.size() == ops.size(), "Duplicate ops"); std::vector> ret(ops.size()); for (auto &e : ret) { e.assign(ops.size(), kSame); } size_t found_num = ops.size(); size_t total_num = ops.size() * ops.size(); auto visitor = [&](OpHandleBase *op, size_t i) { auto it = op_to_idx.find(op); if (it != op_to_idx.end()) { size_t j = it->second; if (i != j && ret[i][j] == kSame) { ret[i][j] = kBefore; ret[j][i] = kAfter; found_num += 2; if (found_num == total_num) { return false; } } } return true; }; for (size_t i = 0; i < ops.size(); ++i) { auto sub_visitor = [&, i](OpHandleBase *op) { return visitor(op, i); }; if (!graph_.VisitAllPendingOps(ops[i], sub_visitor)) { break; } } for (size_t i = 0; i < ops.size(); ++i) { for (size_t j = i + 1; j < ops.size(); ++j) { if (ret[i][j] != kSame) continue; ret[i][j] = kNoDeps; ret[j][i] = kNoDeps; } } return ret; } const OpGraphView graph_; }; /** * Find the nearest downstream computation op handle. If the op is a * computation op, just return itself. */ static ComputationOpHandle *FindNextComputationOpHandleOrReturnItself( OpHandleBase *op, size_t scope_idx) { std::queue q; std::unordered_set visited; q.push(op); do { auto *op = q.front(); q.pop(); auto *compute_op = dynamic_cast(op); if (compute_op != nullptr && compute_op->GetScopeIdx() == scope_idx) { return compute_op; } for (auto *out_var : op->Outputs()) { for (auto *pending_op : out_var->PendingOps()) { if (visited.count(pending_op)) continue; visited.insert(pending_op); q.push(pending_op); } } } while (!q.empty()); return nullptr; } static std::unordered_set ExtractComputationOpFromLastLivedVar(VarHandle *var, size_t scope_idx, const ShrinkDepsOpFunctor &shrink_func, bool *ok) { // stage one. Get last op for variable. std::unordered_set candidates; { if (var->PendingOps().empty() && var->GeneratedOp()) { // No operator depends on this variable. So the last operator is the op // who generates this variable. candidates.emplace(var->GeneratedOp()); } else { candidates = var->PendingOps(); } // No pending ops or generated op is nullptr if (candidates.empty()) { *ok = false; return {}; } } // stage two. Try to cast them to computation op. // return (*ok=false) when failed. // // The reason why we cannot make any types of op handle to be the last lived // op is: // some op handle may operate on many DeviceContext, however, our garbage // collector can only wait one DeviceContext for now. So currently, we wait // the nearest compute op. std::unordered_set computation_op; { for (auto *op : candidates) { auto *compute_op = FindNextComputationOpHandleOrReturnItself(op, scope_idx); if (compute_op == nullptr) { *ok = false; return {}; } computation_op.emplace(compute_op); } } // stage three. Try to shrink computation op if they depend on each other. // Get the smallest set of the most ops. *ok = true; return shrink_func(computation_op); } /** * Shrink op dependencies according to no need buffer vars. * * If some ops do not need Tensor buffer of any input, * just remove the dependency of this op, i.e, decrease reference count. * * For example, input Y of elementwise_add_grad op is only used to infer shape * and lod of Y@GRAD, we do not need the buffer of input Y. Data buffer of * input Y can be collected before elementwise_add_grad op runs. * * This method returns whether the dependency count decreases to 0, and * shrinks op dependency if possible. */ static bool ShrinkNoNeedBufferVarOpDependency( const std::string &var_name, std::unordered_set *op_handles) { std::vector skip_ops; for (auto *op_handle : *op_handles) { auto *op_base = op_handle->GetOp(); auto &inferer = op_base->Info().NoNeedBufferVarsInferer(); if (!inferer) { continue; } std::unordered_set no_need_buffer_vars = inferer(op_base->Inputs(), op_base->Outputs(), op_base->Attrs()); // Check whether var_name occurs in other inputs or outputs of the op // If it occurs, we cannot decrease the dependency number. bool occurred_in_other_vars = false; for (auto &in_pair : op_base->Inputs()) { if (no_need_buffer_vars.count(in_pair.first) > 0) { continue; } auto &args = in_pair.second; auto iter = std::find(args.begin(), args.end(), var_name); if (iter != args.end()) { occurred_in_other_vars = true; break; } } if (occurred_in_other_vars) { continue; } for (auto &out_pair : op_base->Outputs()) { auto &args = out_pair.second; auto iter = std::find(args.begin(), args.end(), var_name); if (iter != args.end()) { occurred_in_other_vars = true; break; } } if (!occurred_in_other_vars) { VLOG(2) << "Shrink var " << var_name << " in op " << op_handle->Name(); skip_ops.emplace_back(op_handle); } } if (skip_ops.size() == op_handles->size()) { op_handles->clear(); return true; } else { for (auto *skip_op : skip_ops) { op_handles->erase(skip_op); } return false; } } void ReferenceCountPass::ApplyImpl(ir::Graph *graph) const { auto &ref_cnts = Get>(kGlobalReferenceCount); auto &last_live_ops_of_vars = Get>(kLastLiveOpsOfVars); PADDLE_ENFORCE(last_live_ops_of_vars.empty() && ref_cnts.empty(), "Last Live Ops and Reference Counts of vars should be " "initialized at here."); const auto &vars = graph->Get(kGraphVars); last_live_ops_of_vars.resize(vars.size()); ref_cnts.resize(vars.size()); ShrinkDepsOpFunctor shrink_func( ir::FilterByNodeWrapper(*graph)); for (size_t i = 0; i < vars.size(); ++i) { for (auto &name_var_pair : vars[i]) { // Whether this variable can be reused or deleted? If not, we do not // compute reference counts and dependencies. VarDesc *var_desc = TryGetLatestVarDesc(name_var_pair.second); if (var_desc == nullptr || var_desc->Persistable()) { continue; } auto var_type = var_desc->Proto()->type().type(); if (var_type != proto::VarType::LOD_TENSOR && var_type != proto::VarType::SELECTED_ROWS && var_type != proto::VarType::LOD_TENSOR_ARRAY) { // Var type cannot be deleted continue; } auto &var_name = name_var_pair.first; auto &var_handles = name_var_pair.second; for (auto iter = var_handles.rbegin(); iter != var_handles.rend(); ++iter) { bool ok; auto result = ExtractComputationOpFromLastLivedVar(*iter, i, shrink_func, &ok); // Seldomly, some vars may have no pending or preceding computation ops // Just break; if (!ok) break; VLOG(10) << "Extract " << result.size() << " ops of var " << var_name; size_t original_op_deps = result.size(); // If all ops do not need buffer of var_name, calculate reference count // of the previous version of var_name. if (ShrinkNoNeedBufferVarOpDependency(var_name, &result)) { VLOG(10) << "Try to precede reference count computing at var " << var_name; continue; } size_t final_op_deps = result.size(); if (final_op_deps < original_op_deps) { VLOG(5) << "Shrink op deps from " << original_op_deps << " to " << final_op_deps; } PADDLE_ENFORCE(!result.empty(), "Last living ops of %s cannot be empty", var_name); ref_cnts[i].emplace(var_name, result.size()); last_live_ops_of_vars[i].emplace(var_name, std::move(result)); break; } // Seldomly, all preceding trying failed. // Just skip this corner case } } } } // namespace details } // namespace framework } // namespace paddle REGISTER_PASS(reference_count_pass, paddle::framework::details::ReferenceCountPass) .RequirePassAttr(paddle::framework::details::kGlobalReferenceCount) .RequirePassAttr(paddle::framework::details::kLastLiveOpsOfVars);