English | [简体中文](README_cn.md) # PP-YOLO ## Table of Contents - [Introduction](#Introduction) - [Model Zoo](#Model_Zoo) - [Getting Start](#Getting_Start) - [Future Work](#Future_Work) - [Appendix](#Appendix) ## Introduction [PP-YOLO](https://arxiv.org/abs/2007.12099) is a optimized model based on YOLOv3 in PaddleDetection,whose performance(mAP on COCO) and inference spped are better than [YOLOv4](https://arxiv.org/abs/2004.10934),PaddlePaddle 2.0.0rc1(available on pip now) or [Daily Version](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/install/Tables.html#whl-release) is required to run this PP-YOLO。 PP-YOLO reached mmAP(IoU=0.5:0.95) as 45.9% on COCO test-dev2017 dataset, and inference speed of FP32 on single V100 is 72.9 FPS, inference speed of FP16 with TensorRT on single V100 is 155.6 FPS.
PP-YOLO improved performance and speed of YOLOv3 with following methods: - Better backbone: ResNet50vd-DCN - Larger training batch size: 8 GPUs and mini-batch size as 24 on each GPU - [Drop Block](https://arxiv.org/abs/1810.12890) - [Exponential Moving Average](https://www.investopedia.com/terms/e/ema.asp) - [IoU Loss](https://arxiv.org/pdf/1902.09630.pdf) - [Grid Sensitive](https://arxiv.org/abs/2004.10934) - [Matrix NMS](https://arxiv.org/pdf/2003.10152.pdf) - [CoordConv](https://arxiv.org/abs/1807.03247) - [Spatial Pyramid Pooling](https://arxiv.org/abs/1406.4729) - Better ImageNet pretrain weights ## Model Zoo ### PP-YOLO | Model | GPU number | images/GPU | backbone | input shape | Box APval | Box APtest | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config | |:------------------------:|:----------:|:----------:|:----------:| :----------:| :------------------: | :-------------------: | :------------: | :---------------------: | :------: | :-----: | | PP-YOLO | 8 | 24 | ResNet50vd | 608 | 44.8 | 45.2 | 72.9 | 155.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml) | | PP-YOLO_2x | 8 | 24 | ResNet50vd | 608 | 45.3 | 45.9 | 72.9 | 155.6 | [model](https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_2x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/ppyolo/ppyolo_r50vd_dcn_2x_coco.yml) | **Notes:** - PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box APtest is evaluation results of `mAP(IoU=0.5:0.95)`. - PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](../../../docs/FAQ.md). - PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode. - PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method. - TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too) ## Getting Start ### 1. Training Training PP-YOLO on 8 GPUs with following command(all commands should be run under PaddleDetection dygraph directory as default) ```bash python -m paddle.distributed.launch --log_dir=./ppyolo_dygraph/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml &>ppyolo_dygraph.log 2>&1 & ``` ### 2. Evaluation Evaluating PP-YOLO on COCO val2017 dataset in single GPU with following commands: ```bash # use weights released in PaddleDetection model zoo CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams # use saved checkpoint in training CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=output/ppyolo_r50vd_dcn_1x_coco/model_final ``` For evaluation on COCO test-dev2017 dataset, `configs/ppyolo/ppyolo_test.yml` should be used, please download COCO test-dev2017 dataset from [COCO dataset download](https://cocodataset.org/#download) and decompress to pathes configured by `EvalReader.dataset` in `configs/ppyolo/ppyolo_test.yml` and run evaluation by following command: ```bash # use weights released in PaddleDetection model zoo CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams # use saved checkpoint in training CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/ppyolo/ppyolo_test.yml -o weights=output/ppyolo_r50vd_dcn_1x_coco/model_final ``` Evaluation results will be saved in `bbox.json`, compress it into a `zip` package and upload to [COCO dataset evaluation](https://competitions.codalab.org/competitions/20794#participate) to evaluate. **NOTE:** `configs/ppyolo/ppyolo_test.yml` is only used for evaluation on COCO test-dev2017 dataset, could not be used for training or COCO val2017 dataset evaluating. ### 3. Inference Inference images in single GPU with following commands, use `--infer_img` to inference a single image and `--infer_dir` to inference all images in the directory. ```bash # inference single image CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=../demo/000000014439_640x640.jpg # inference all images in the directory CUDA_VISIBLE_DEVICES=0 python tools/infer.py configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_dir=../demo ``` ### 4. Inferece deployment and benchmark For inference deployment or benchmard, model exported with `tools/export_model.py` should be used and perform inference with Paddle inference library with following commands: ```bash # export model, model will be save in output/ppyolo as default python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams # inference with Paddle Inference library CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True ``` Benchmark testing for PP-YOLO uses model without data reading and post-processing(NMS), export model with `--exclude_nms` to prunce NMS for benchmark testing from mode with following commands: ```bash # export model, --exclude_nms to prune NMS part, model will be save in output/ppyolo as default python tools/export_model.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o weights=https://paddlemodels.bj.bcebos.com/object_detection/dygraph/ppyolo_r50vd_dcn_1x_coco.pdparams --exclude_nms # FP32 benchmark CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True # TensorRT FP16 benchmark CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyolo_r50vd_dcn_1x_coco --image_file=../demo/000000014439_640x640.jpg --use_gpu=True --run_benchmark=True --run_mode=trt_fp16 ``` ## Future work 1. more PP-YOLO tiny model 2. PP-YOLO model with more backbones ## Appendix Optimizing method and ablation experiments of PP-YOLO compared with YOLOv3. | NO. | Model | Box APval | Box APtest | Params(M) | FLOPs(G) | V100 FP32 FPS | | :--: | :--------------------------- | :------------------: |:--------------------: | :-------: | :------: | :-----------: | | A | YOLOv3-DarkNet53 | 38.9 | - | 59.13 | 65.52 | 58.2 | | B | YOLOv3-ResNet50vd-DCN | 39.1 | - | 43.89 | 44.71 | 79.2 | | C | B + LB + EMA + DropBlock | 41.4 | - | 43.89 | 44.71 | 79.2 | | D | C + IoU Loss | 41.9 | - | 43.89 | 44.71 | 79.2 | | E | D + IoU Aware | 42.5 | - | 43.90 | 44.71 | 74.9 | | F | E + Grid Sensitive | 42.8 | - | 43.90 | 44.71 | 74.8 | | G | F + Matrix NMS | 43.5 | - | 43.90 | 44.71 | 74.8 | | H | G + CoordConv | 44.0 | - | 43.93 | 44.76 | 74.1 | | I | H + SPP | 44.3 | 45.2 | 44.93 | 45.12 | 72.9 | | J | I + Better ImageNet Pretrain | 44.8 | 45.2 | 44.93 | 45.12 | 72.9 | | K | J + 2x Scheduler | 45.3 | 45.9 | 44.93 | 45.12 | 72.9 | **Notes:** - Performance and inference spedd are measure with input shape as 608 - All models are trained on COCO train2017 datast and evaluated on val2017 & test-dev2017 dataset,`Box AP` is evaluation results as `mAP(IoU=0.5:0.95)`. - Inference speed is tested on single Tesla V100 with batch size as 1 following test method and environment configuration in benchmark above. - [YOLOv3-DarkNet53](../yolov3/yolov3_darknet53_270e_coco.yml) with mAP as 39.0 is optimized YOLOv3 model in PaddleDetection,see [Model Zoo](../../../docs/MODEL_ZOO.md) for details.