# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import os import numpy as np import paddle.v2.fluid as fluid import paddle.v2.fluid.profiler as profiler import paddle.v2.fluid.layers as layers import paddle.v2.fluid.core as core class TestProfiler(unittest.TestCase): def test_nvprof(self): if not fluid.core.is_compiled_with_cuda(): return epoc = 8 dshape = [4, 3, 28, 28] data = layers.data(name='data', shape=[3, 28, 28], dtype='float32') conv = layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1]) place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) output_file = 'cuda_profiler.txt' with profiler.cuda_profiler(output_file, 'csv') as nvprof: for i in range(epoc): input = np.random.random(dshape).astype('float32') exe.run(fluid.default_main_program(), feed={'data': input}) os.remove(output_file) def net_profiler(self, state): if state == 'GPU' and not core.is_compiled_with_cuda(): return startup_program = fluid.Program() main_program = fluid.Program() with fluid.program_guard(main_program, startup_program): image = fluid.layers.data(name='x', shape=[784], dtype='float32') hidden1 = fluid.layers.fc(input=image, size=128, act='relu') hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu') predict = fluid.layers.fc(input=hidden2, size=10, act='softmax') label = fluid.layers.data(name='y', shape=[1], dtype='int64') cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) accuracy = fluid.evaluator.Accuracy(input=predict, label=label) optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9) opts = optimizer.minimize(avg_cost, startup_program=startup_program) place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) accuracy.reset(exe) with profiler.profiler(state, 'total') as prof: for iter in range(10): if iter == 2: profiler.reset_profiler() x = np.random.random((32, 784)).astype("float32") y = np.random.randint(0, 10, (32, 1)).astype("int64") outs = exe.run(main_program, feed={'x': x, 'y': y}, fetch_list=[avg_cost] + accuracy.metrics) acc = np.array(outs[1]) pass_acc = accuracy.eval(exe) def test_cpu_profiler(self): self.net_profiler('CPU') def test_cuda_profiler(self): self.net_profiler('GPU') if __name__ == '__main__': unittest.main()