_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', '_base_/optimizer_270e.yml', '_base_/yolov3_mobilenet_v1.yml', '_base_/yolov3_reader.yml', ] snapshot_epoch: 5 pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/MobileNetV1_ssld_pretrained.pdparams weights: output/yolov3_mobilenet_v1_ssld_270e_voc/model_final TrainReader: inputs_def: num_max_boxes: 50 sample_transforms: - Decode: {} - Mixup: {alpha: 1.5, beta: 1.5} - RandomDistort: {} - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} - RandomCrop: {} - RandomFlip: {} batch_transforms: - BatchRandomResize: target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608] random_size: True random_interp: True keep_ratio: False - NormalizeBox: {} - PadBox: {num_max_boxes: 50} - BboxXYXY2XYWH: {} - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} - Permute: {} - Gt2YoloTarget: anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]] downsample_ratios: [32, 16, 8] num_classes: 20 batch_size: 8 shuffle: true drop_last: true mixup_epoch: 250 LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: - 216 - 243 - !LinearWarmup start_factor: 0. steps: 1000