// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h" #include #include #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/operators/math/cpu_vec.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace framework { namespace ir { #define GET_CONV_BN_NODES(pattern_name) \ /* OPERATORS */ \ GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name); \ /* CONV inputs */ \ GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name); \ /* CONV outputs */ \ GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name); \ /* BN inputs */ \ GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name); \ /* BN outputs */ \ GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */ \ GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name); \ GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name) LoDTensor tensor_apply(const LoDTensor& vec, float (*f)(float)) { LoDTensor vec_y; vec_y.Resize(vec.dims()); const float* x = vec.data(); float* y = vec_y.mutable_data(platform::CPUPlace()); for (int64_t i = 0; i < vec.numel(); i++) { y[i] = f(x[i]); } return vec_y; } void tensor_apply_inplace(LoDTensor* vec, float (*f)(float)) { float* data = vec->mutable_data(platform::CPUPlace()); for (int64_t i = 0; i < vec->numel(); i++) { data[i] = f(data[i]); } } template LoDTensor tensor_apply_eltwise(const LoDTensor& vec_a, const LoDTensor& vec_b, BinaryOperation f) { PADDLE_ENFORCE_EQ(vec_a.dims(), vec_b.dims()); LoDTensor vec_y; vec_y.Resize(vec_a.dims()); const float* a = vec_a.data(); const float* b = vec_b.data(); float* y = vec_y.mutable_data(platform::CPUPlace()); for (int64_t i = 0; i < vec_a.numel(); i++) { y[i] = f(a[i], b[i]); } return vec_y; } template LoDTensor tensor_apply_eltwise_broadcast(const LoDTensor& vec_a, const LoDTensor& vec_b, BinaryOperation f) { PADDLE_ENFORCE_EQ(vec_a.dims().size(), 2); PADDLE_ENFORCE_EQ(vec_b.dims().size(), 2); PADDLE_ENFORCE_EQ(vec_a.dims()[0], vec_b.dims()[0]); PADDLE_ENFORCE_EQ(vec_b.dims()[1], 1); LoDTensor vec_y; vec_y.Resize(vec_a.dims()); const float* a = vec_a.data(); const float* b = vec_b.data(); float* y = vec_y.mutable_data(platform::CPUPlace()); size_t a_height = vec_a.dims()[0]; size_t a_width = vec_a.dims()[1]; for (size_t h = 0; h < a_height; h++) { for (size_t w = 0; w < a_width; ++w) { *(y++) = f(*(a++), b[h]); } } return vec_y; } // reshape to two dimensions {A, B * C * ...} void make_tensor_2d(LoDTensor* tensor_to_reshape) { auto dims_count = tensor_to_reshape->dims().size(); PADDLE_ENFORCE_GT(dims_count, 0); int size2 = 1; for (int i = 1; i < dims_count; i++) { size2 *= tensor_to_reshape->dims()[i]; } tensor_to_reshape->Resize(make_ddim({tensor_to_reshape->dims()[0], size2})); } void recompute_conv_weights(LoDTensor* weights, LoDTensor* tmp) { // remember the weights tensor shape {A, B, C, ...} auto weights_shape = weights->dims(); // reduce the weights to 2d {A, B * C * ...} make_tensor_2d(weights); // make tmp tensor 2d by adding 1 as second dim {A, 1} make_tensor_2d(tmp); *weights = tensor_apply_eltwise_broadcast(*weights, *tmp, std::multiplies()); // reshape weights to the original dims {A, B, C, ...} weights->Resize(weights_shape); } void recompute_bias_and_weights(const Scope* scope, ir::Node* conv_weight, // const ir::Node& bn_scale, // const LoDTensor& bn_bias_tensor, // const ir::Node& bn_mean, // const ir::Node& bn_variance, // LoDTensor* eltwise_y_in_tensor) { // Re-compute bias of conv2d from BN PADDLE_ENFORCE_EQ(eltwise_y_in_tensor->dims(), bn_bias_tensor.dims()); auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable(); auto* variance_tensor = scope->FindVar(bn_variance.Name())->GetMutable(); auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable(); auto std_tensor = LoDTensor(); std_tensor.Resize(bn_bias_tensor.dims()); std_tensor = tensor_apply(*variance_tensor, [](float x) { return x + 1e-5f; }); tensor_apply_inplace(&std_tensor, std::sqrt); auto tmp_tensor = tensor_apply_eltwise(*scale_tensor, std_tensor, std::divides()); auto tensor_minus = tensor_apply_eltwise(*eltwise_y_in_tensor, *mean_tensor, std::minus()); auto tensor_mul = tensor_apply_eltwise(tensor_minus, tmp_tensor, std::multiplies()); *eltwise_y_in_tensor = tensor_apply_eltwise(tensor_mul, bn_bias_tensor, std::plus()); // Re-compute weight of conv2d from BN auto* current_param = scope->FindVar(conv_weight->Name())->GetMutable(); recompute_conv_weights(current_param, &tmp_tensor); } std::unique_ptr ConvBNFusePass::ApplyImpl( std::unique_ptr graph) const { PADDLE_ENFORCE(graph.get()); FusePassBase::Init(name_scope_, graph.get()); auto* scope = param_scope(); PADDLE_ENFORCE(scope); GraphPatternDetector gpd; auto* conv_input = gpd.mutable_pattern() ->NewNode(patterns::PDNodeName(name_scope_, "conv_input")) ->AsInput() ->assert_is_op_input("conv2d", "Input"); patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_); conv_bn_pattern(conv_input, false /*with_eltwise_add*/); int found_conv_bn_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "handle ConvBN fuse"; // conv, batch_norm, // conv_weight, conv_out, // bn_scale, bn_bias, bn_mean, bn_variance, // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance GET_CONV_BN_NODES(conv_bn_pattern); // Create eltwise_y (conv bias) variable VarDesc eltwise_y_in_desc( patterns::PDNodeName(name_scope_, "eltwise_y_in")); auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc); auto* eltwise_y_in_tensor = scope->Var(eltwise_y_in_node->Name())->GetMutable(); // Get batch norm bias auto* bn_bias_tensor = scope->FindVar(bn_bias->Name())->GetMutable(); // Initialize eltwise_y eltwise_y_in_tensor->Resize(bn_bias_tensor->dims()); std::fill_n(eltwise_y_in_tensor->mutable_data(platform::CPUPlace()), eltwise_y_in_tensor->numel(), 0.0f); // update weights and biases recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, *bn_mean, *bn_variance, eltwise_y_in_tensor); // Create an elementwise add node OpDesc desc; desc.SetInput("X", std::vector({conv_out->Name()})); desc.SetInput("Y", std::vector({eltwise_y_in_node->Name()})); desc.SetOutput("Out", std::vector({bn_out->Name()})); desc.SetType("elementwise_add"); desc.SetAttr("axis", 1); bool a = boost::get(conv->Op()->GetAttr("use_mkldnn")); desc.SetAttr("use_mkldnn", a); auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied. GraphSafeRemoveNodes(graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance}); PADDLE_ENFORCE(subgraph.count(conv_input)); IR_NODE_LINK_TO(conv_out, eltwise_op); IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op); IR_NODE_LINK_TO(eltwise_op, bn_out); found_conv_bn_count++; }; gpd(graph.get(), handler); AddStatis(found_conv_bn_count); return graph; } std::unique_ptr ConvEltwiseAddBNFusePass::ApplyImpl( std::unique_ptr graph) const { PADDLE_ENFORCE(graph.get()); FusePassBase::Init(name_scope_, graph.get()); auto* scope = param_scope(); PADDLE_ENFORCE(scope); GraphPatternDetector gpd; auto* conv_input = gpd.mutable_pattern() ->NewNode(patterns::PDNodeName(name_scope_, "conv_input")) ->AsInput() ->assert_is_op_input("conv2d", "Input"); patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_); conv_bn_pattern(conv_input, true /*with_eltwise_add*/); int found_conv_bn_count = 0; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { VLOG(4) << "handle ConvBN fuse"; // conv, batch_norm, // conv_weight, conv_out, // bn_scale, bn_bias, bn_mean, bn_variance, // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance GET_CONV_BN_NODES(conv_bn_pattern); // OPERATORS GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern); // BIAS inputs GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern); // BIAS outputs GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern); // Get eltwise_y (conv bias) variable auto* eltwise_y_in_tensor = scope->FindVar(eltwise_y_in->Name())->GetMutable(); // Get batch norm bias auto* bn_bias_tensor = scope->FindVar(bn_bias->Name())->GetMutable(); // update weights and biases recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor, *bn_mean, *bn_variance, eltwise_y_in_tensor); // Update the elementwise_add node eltwise->Op()->SetAttr("axis", 1); eltwise->Op()->SetOutput("Out", std::vector({bn_out->Name()})); GraphSafeRemoveNodes( graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out}); PADDLE_ENFORCE(subgraph.count(conv_input)); IR_NODE_LINK_TO(eltwise, bn_out); found_conv_bn_count++; }; gpd(graph.get(), handler); AddStatis(found_conv_bn_count); return graph; } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass); REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass, paddle::framework::ir::ConvEltwiseAddBNFusePass);