/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include "paddle/gserver/layers/DataLayer.h" #include "ModelConfig.pb.h" #include "paddle/trainer/Trainer.h" #include "paddle/utils/GlobalConstants.h" #include "paddle/gserver/layers/ExpandConvTransLayer.h" #include "TestUtil.h" #include "LayerGradUtil.h" using namespace paddle; // NOLINT using namespace std; // NOLINT P_DECLARE_bool(use_gpu); P_DECLARE_int32(gpu_id); P_DECLARE_double(checkgrad_eps); P_DECLARE_bool(thread_local_rand_use_global_seed); P_DECLARE_bool(prev_batch_state); // Test that the convTrans forward is the same as conv backward TEST(Layer, batchNorm) { FLAGS_use_gpu = false; TestConfig configBN; const int CHANNELS = 6272; const int IMG_SIZE = 1; configBN.layerConfig.set_type("batch_norm"); configBN.layerConfig.set_name("bn"); configBN.layerConfig.set_size(CHANNELS * IMG_SIZE * IMG_SIZE); configBN.layerConfig.set_active_type("relu"); configBN.biasSize = CHANNELS; configBN.inputDefs.push_back({INPUT_DATA, "layer_0", /* dim= */ IMG_SIZE * IMG_SIZE * CHANNELS, /* paraSize= */ CHANNELS}); configBN.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS}); configBN.inputDefs.back().isStatic = true; configBN.inputDefs.push_back({INPUT_DATA, "layer_2_running_var", 1, CHANNELS}); configBN.inputDefs.back().isStatic = true; LayerInputConfig* input = configBN.layerConfig.add_inputs(); configBN.layerConfig.add_inputs(); configBN.layerConfig.add_inputs(); ImageConfig* img_conf = input->mutable_image_conf(); img_conf->set_channels(CHANNELS); img_conf->set_img_size(IMG_SIZE); // Setting up conv-layer config TestConfig config; config.biasSize = 64; config.layerConfig.set_type("exconv"); config.layerConfig.set_num_filters(64); config.layerConfig.set_partial_sum(1); config.layerConfig.set_shared_biases(true); config.inputDefs.push_back({INPUT_DATA, "bn", 6272, 204800}); input = config.layerConfig.add_inputs(); ConvConfig* conv = input->mutable_conv_conf(); conv->set_filter_size(5); conv->set_filter_size_y(5); conv->set_channels(128); conv->set_padding(1); conv->set_padding_y(1); conv->set_stride(2); conv->set_stride_y(2); conv->set_groups(1); conv->set_filter_channels(conv->channels() / conv->groups()); conv->set_img_size(7); conv->set_output_x(3); config.layerConfig.set_size(conv->output_x() * conv->output_x() * config.layerConfig.num_filters()); config.layerConfig.set_name("conv"); // data layer initialize std::vector dataLayers; LayerMap layerMap; vector datas; initDataLayer(configBN, &dataLayers, &datas, &layerMap, "batch_norm", 100, false, false); // test layer initialize std::vector parameters; LayerPtr bnLayer; initTestLayer(configBN, &layerMap, ¶meters, &bnLayer); std::vector parameters2; LayerPtr convLayer; initTestLayer(config, &layerMap, ¶meters2, &convLayer); // Set convLayer outputGrad as convTransLayer input value bnLayer->forward(PASS_GC); convLayer->forward(PASS_GC); CHECK_EQ(convLayer->getOutputValue()->getHeight(), 100); CHECK_EQ(convLayer->getOutputValue()->getWidth(), 576); } int main(int argc, char** argv) { testing::InitGoogleTest(&argc, argv); initMain(argc, argv); FLAGS_thread_local_rand_use_global_seed = true; srand(1); return RUN_ALL_TESTS(); }