# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid from op_test import OpTest class TestReorgOp(OpTest): @staticmethod def helper(in_, width, height, channel, batch, stride, forward, out_): channel_out = channel / (stride * stride) for b in range(batch): for k in range(channel): for j in range(height): for i in range(width): in_index = i + width * (j + height * (k + channel * b)) channel2 = k % channel_out offset = k / channel_out width2 = i * stride + offset % stride height2 = j * stride + offset / stride out_index = width2 + width * stride * ( height2 + height * stride * (channel2 + channel_out * b)) if forward: out_[out_index] = in_[in_index] else: out_[in_index] = in_[out_index] def setUp(self): self.init_data() self.op_type = "reorg" self.inputs = {"X": self.x} self.helper(self.x_1d, self.x.shape[3], self.x.shape[2], self.x.shape[1], self.x.shape[0], self.stride, self.forward, self.out_1d) self.out = np.reshape(self.out_1d, self.infered_shape) self.attrs = {"stride": long(self.stride)} self.outputs = {"Out": self.out} def init_data(self): self.ori_shape = (32, 12, 6, 6) self.infered_shape = (32, 48, 3, 3) self.one_d_len = 32 * 48 * 3 * 3 self.stride = 2 self.x = np.random.random(self.ori_shape).astype('float32') self.x_1d = np.reshape(self.x, self.one_d_len) self.out = np.zeros(self.infered_shape).astype('float32') self.out_1d = np.reshape(self.out, self.one_d_len) self.forward = 1 def test_check_output(self): place = fluid.core.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.core.CPUPlace() self.check_output_with_place(place, 1e-5, None, False) def test_check_grad(self): place = fluid.core.CUDAPlace(0) if fluid.core.is_compiled_with_cuda( ) else fluid.core.CPUPlace() self.check_grad_with_place(place, ['X'], 'Out') class TestReorgOp2(TestReorgOp): def init_data(self): self.ori_shape = (32, 9, 6, 6) self.infered_shape = (32, 81, 2, 2) self.one_d_len = 32 * 81 * 2 * 2 self.stride = 3 self.x = np.random.random(self.ori_shape).astype('float32') self.x_1d = np.reshape(self.x, self.one_d_len) self.out = np.zeros(self.infered_shape).astype('float32') self.out_1d = np.reshape(self.out, self.one_d_len) self.forward = 1 if __name__ == '__main__': unittest.main()