# Copyright (c) 2016 Baidu, Inc. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #Todo(luotao02) This config is only used for unitest. It is out of date now, and will be updated later. ################################### Data Configuration ################################### TrainData(ProtoData(files = "train.list")) ################################### Algorithm Configuration ################################### Settings( learning_rate_decay_a = 0.0, learning_rate_decay_b = 0.0, learning_rate = 1e-03, batch_size = 1000, algorithm = 'sgd', num_batches_per_send_parameter = 1, num_batches_per_get_parameter = 1, learning_method='momentum', ) default_momentum(0.5) ################################### Network Configuration ################################### Layer(type = "data", name = "input", size = 784) Layer(inputs = [Input("input", parameter_name = "_layer1.w")], name = "layer1", bias = Bias(parameter_name = "_layer1.bias"), active_type = "sigmoid", type = "fc", size = 800) Layer(inputs = [Input("layer1", parameter_name = "_layer2.w")], name = "layer2", bias = Bias(parameter_name = "_layer2.bias"), active_type = "sigmoid", type = "fc", size = 800) #Layer(inputs = [Input("layer2", parameter_name = "_layer_output.w", decay_rate = 0.02)], name = "output", bias = Bias(parameter_name = "_layer_output.bias"), active_type = "margin", type = "fc", size = 10) #Layer(inputs = [Input("layer2", parameter_name = "_layer_output.w", decay_rate = 0.02)], name = "output", bias = Bias(parameter_name = "_layer_output.bias"), type = "fc", size = 10) Layer(inputs = [Input("layer2", parameter_name = "_layer_output.w")], name = "output", bias = Bias(parameter_name = "_layer_output.bias"), active_type = "softmax", type = "fc", size = 10) Layer(type = "data", name = "label", size = 1) Layer(inputs = [Input("output"), Input("label")], type = "multi-class-cross-entropy", name = "cost") #Layer(inputs = [Input("output"), Input("label")], type = "huber", name = "cost") Evaluator(inputs=["output", "label"], type = "classification_error", name = "classification_error") Inputs("input", "label") Outputs("cost")