/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template inline T tolerable_value(const T x) { static_assert(std::is_floating_point::value, "tolerable_value works only on float, " "double and double double."); const T kApproInf = 1e20; if (x == INFINITY) { return kApproInf; } if (x == -INFINITY) { return -kApproInf; } return x; } template class CrossEntropyOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); auto x = ctx.Input("X"); auto y = ctx.Output("Y"); auto* x_data = x->data(); y->mutable_data(ctx.GetPlace()); auto* y_data = y->data(); int batch_size = x->dims()[0]; int class_num = x->dims()[1]; int label_rank = ctx.Input("Label")->dims().size(); if (label_rank == 2) { // soft cross entropy auto* label_data = ctx.Input("Label")->data(); int index = 0; for (int i = 0; i < batch_size; ++i) { T sum = static_cast(0); for (int j = 0; j < class_num; ++j) { sum += label_data[index] * std::log(x_data[index]); y_data[i] = -tolerable_value(sum); index++; } } } else { // normal cross entropy auto* label_data = ctx.Input("Label")->data(); for (int i = 0; i < batch_size; ++i) { int index = i * class_num + label_data[i]; y_data[i] = -tolerable_value(std::log(x_data[index])); } } } }; template class CrossEntropyGradientOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_cpu_place(ctx.GetPlace()), "It must use CPUPlace."); auto x = ctx.Input("X"); auto dx = ctx.Output(framework::GradVarName("X")); auto dy = ctx.Input(framework::GradVarName("Y")); auto label = ctx.Input("Label"); auto* dx_data = dx->mutable_data(ctx.GetPlace()); auto* dy_data = dy->data(); auto* x_data = x->data(); int batch_size = x->dims()[0]; int class_num = x->dims()[1]; int label_rank = ctx.Input("Label")->dims().size(); // TODO(qingqing): make zero setting an common function. if (label_rank == 2) { // soft cross entropy auto* label_data = ctx.Input("Label")->data(); int index = 0; for (int i = 0; i < batch_size; ++i) { for (int j = 0; j < class_num; ++j) { dx_data[index] = -label_data[index] * dy_data[i] / x_data[index]; index++; } } } else { // normal cross entropy auto* label_data = label->data(); memset(dx_data, 0, sizeof(T) * batch_size * class_num); for (int i = 0; i < batch_size; ++i) { PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); int index = i * class_num + label_data[i]; dx_data[index] = -dy_data[i] / x_data[index]; } } } }; } // namespace operators } // namespace paddle