# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict from paddle import fluid from ppdet.experimental import mixed_precision_global_state from ppdet.core.workspace import register __all__ = ['YOLOv3'] @register class YOLOv3(object): """ YOLOv3 network, see https://arxiv.org/abs/1804.02767 Args: backbone (object): an backbone instance yolo_head (object): an `YOLOv3Head` instance """ __category__ = 'architecture' __inject__ = ['backbone', 'yolo_head'] __shared__ = ['use_fine_grained_loss'] def __init__(self, backbone, yolo_head='YOLOv3Head', use_fine_grained_loss=False): super(YOLOv3, self).__init__() self.backbone = backbone self.yolo_head = yolo_head self.use_fine_grained_loss = use_fine_grained_loss def build(self, feed_vars, mode='train'): im = feed_vars['image'] mixed_precision_enabled = mixed_precision_global_state() is not None # cast inputs to FP16 if mixed_precision_enabled: im = fluid.layers.cast(im, 'float16') body_feats = self.backbone(im) if isinstance(body_feats, OrderedDict): body_feat_names = list(body_feats.keys()) body_feats = [body_feats[name] for name in body_feat_names] # cast features back to FP32 if mixed_precision_enabled: body_feats = [fluid.layers.cast(v, 'float32') for v in body_feats] if mode == 'train': gt_bbox = feed_vars['gt_bbox'] gt_class = feed_vars['gt_class'] gt_score = feed_vars['gt_score'] # Get targets for splited yolo loss calculation # YOLOv3 supports up to 3 output layers currently targets = [] for i in range(3): k = 'target{}'.format(i) if k in feed_vars: targets.append(feed_vars[k]) loss = self.yolo_head.get_loss(body_feats, gt_bbox, gt_class, gt_score, targets) total_loss = fluid.layers.sum(list(loss.values())) loss.update({'loss': total_loss}) return loss else: im_size = feed_vars['im_size'] return self.yolo_head.get_prediction(body_feats, im_size) def _inputs_def(self, image_shape, num_max_boxes): im_shape = [None] + image_shape # yapf: disable inputs_def = { 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0}, 'im_size': {'shape': [None, 2], 'dtype': 'int32', 'lod_level': 0}, 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0}, 'gt_bbox': {'shape': [None, num_max_boxes, 4], 'dtype': 'float32', 'lod_level': 0}, 'gt_class': {'shape': [None, num_max_boxes], 'dtype': 'int32', 'lod_level': 0}, 'gt_score': {'shape': [None, num_max_boxes], 'dtype': 'float32', 'lod_level': 0}, 'is_difficult': {'shape': [None, num_max_boxes],'dtype': 'int32', 'lod_level': 0}, } # yapf: enable if self.use_fine_grained_loss: # yapf: disable targets_def = { 'target0': {'shape': [None, 3, 86, 19, 19], 'dtype': 'float32', 'lod_level': 0}, 'target1': {'shape': [None, 3, 86, 38, 38], 'dtype': 'float32', 'lod_level': 0}, 'target2': {'shape': [None, 3, 86, 76, 76], 'dtype': 'float32', 'lod_level': 0}, } # yapf: enable downsample = 32 for k, mask in zip(targets_def.keys(), self.yolo_head.anchor_masks): targets_def[k]['shape'][1] = len(mask) targets_def[k]['shape'][2] = 6 + self.yolo_head.num_classes targets_def[k]['shape'][3] = image_shape[ -2] // downsample if image_shape[-2] else None targets_def[k]['shape'][4] = image_shape[ -1] // downsample if image_shape[-1] else None downsample // 2 inputs_def.update(targets_def) return inputs_def def build_inputs( self, image_shape=[3, None, None], fields=['image', 'gt_bbox', 'gt_class', 'gt_score'], # for train num_max_boxes=50, use_dataloader=True, iterable=False): inputs_def = self._inputs_def(image_shape, num_max_boxes) if self.use_fine_grained_loss: fields.extend(['target0', 'target1', 'target2']) feed_vars = OrderedDict([(key, fluid.data( name=key, shape=inputs_def[key]['shape'], dtype=inputs_def[key]['dtype'], lod_level=inputs_def[key]['lod_level'])) for key in fields]) loader = fluid.io.DataLoader.from_generator( feed_list=list(feed_vars.values()), capacity=64, use_double_buffer=True, iterable=iterable) if use_dataloader else None return feed_vars, loader def train(self, feed_vars): return self.build(feed_vars, mode='train') def eval(self, feed_vars): return self.build(feed_vars, mode='test') def test(self, feed_vars): return self.build(feed_vars, mode='test')