# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from pycocotools.coco import COCO import logging logger = logging.getLogger(__name__) def load(anno_path, sample_num=-1, with_background=True): """ Load COCO records with annotations in json file 'anno_path' Args: anno_path (str): json file path sample_num (int): number of samples to load, -1 means all with_background (bool): whether load background as a class. if True, total class number will be 81. default True Returns: (records, cname2cid) 'records' is list of dict whose structure is: { 'im_file': im_fname, # image file name 'im_id': img_id, # image id 'h': im_h, # height of image 'w': im_w, # width 'is_crowd': is_crowd, 'gt_score': gt_score, 'gt_class': gt_class, 'gt_bbox': gt_bbox, 'gt_poly': gt_poly, } 'cname2cid' is a dict used to map category name to class id """ assert anno_path.endswith('.json'), 'invalid coco annotation file: ' \ + anno_path coco = COCO(anno_path) img_ids = coco.getImgIds() cat_ids = coco.getCatIds() records = [] ct = 0 # when with_background = True, mapping category to classid, like: # background:0, first_class:1, second_class:2, ... catid2clsid = dict( {catid: i + int(with_background) for i, catid in enumerate(cat_ids)}) cname2cid = dict({ coco.loadCats(catid)[0]['name']: clsid for catid, clsid in catid2clsid.items() }) for img_id in img_ids: img_anno = coco.loadImgs(img_id)[0] im_fname = img_anno['file_name'] im_w = img_anno['width'] im_h = img_anno['height'] ins_anno_ids = coco.getAnnIds(imgIds=img_id, iscrowd=False) instances = coco.loadAnns(ins_anno_ids) bboxes = [] for inst in instances: x, y, box_w, box_h = inst['bbox'] x1 = max(0, x) y1 = max(0, y) x2 = min(im_w - 1, x1 + max(0, box_w - 1)) y2 = min(im_h - 1, y1 + max(0, box_h - 1)) if inst['area'] > 0 and x2 >= x1 and y2 >= y1: inst['clean_bbox'] = [x1, y1, x2, y2] bboxes.append(inst) else: logger.warn( 'Found an invalid bbox in annotations: im_id: {}, area: {} x: {}, y: {}, h: {}, w: {}.'. format(img_id, float(inst['area']), x, y, box_w, box_h)) num_bbox = len(bboxes) gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32) gt_class = np.zeros((num_bbox, 1), dtype=np.int32) gt_score = np.ones((num_bbox, 1), dtype=np.float32) is_crowd = np.zeros((num_bbox, 1), dtype=np.int32) difficult = np.zeros((num_bbox, 1), dtype=np.int32) gt_poly = [None] * num_bbox for i, box in enumerate(bboxes): catid = box['category_id'] gt_class[i][0] = catid2clsid[catid] gt_bbox[i, :] = box['clean_bbox'] is_crowd[i][0] = box['iscrowd'] gt_poly[i] = box['segmentation'] coco_rec = { 'im_file': im_fname, 'im_id': np.array([img_id]), 'h': im_h, 'w': im_w, 'is_crowd': is_crowd, 'gt_class': gt_class, 'gt_bbox': gt_bbox, 'gt_score': gt_score, 'gt_poly': gt_poly, 'difficult': difficult } logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format( im_fname, img_id, im_h, im_w)) records.append(coco_rec) ct += 1 if sample_num > 0 and ct >= sample_num: break assert len(records) > 0, 'not found any coco record in %s' % (anno_path) logger.info('{} samples in file {}'.format(ct, anno_path)) return records, cname2cid