# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import cv2 import glob import re import paddle import numpy as np import os.path as osp from collections import defaultdict from ppdet.core.workspace import create from ppdet.utils.checkpoint import load_weight, load_pretrain_weight from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box from ppdet.modeling.mot.utils import MOTTimer, load_det_results, write_mot_results, save_vis_results from ppdet.metrics import Metric, MOTMetric, KITTIMOTMetric from ppdet.metrics import MCMOTMetric import ppdet.utils.stats as stats from .callbacks import Callback, ComposeCallback from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['Tracker'] class Tracker(object): def __init__(self, cfg, mode='eval'): self.cfg = cfg assert mode.lower() in ['test', 'eval'], \ "mode should be 'test' or 'eval'" self.mode = mode.lower() self.optimizer = None # build MOT data loader self.dataset = cfg['{}MOTDataset'.format(self.mode.capitalize())] # build model self.model = create(cfg.architecture) self.status = {} self.start_epoch = 0 # initial default callbacks self._init_callbacks() # initial default metrics self._init_metrics() self._reset_metrics() def _init_callbacks(self): self._callbacks = [] self._compose_callback = None def _init_metrics(self): if self.mode in ['test']: self._metrics = [] return if self.cfg.metric == 'MOT': self._metrics = [MOTMetric(), ] elif self.cfg.metric == 'MCMOT': self._metrics = [MCMOTMetric(self.cfg.num_classes), ] elif self.cfg.metric == 'KITTI': self._metrics = [KITTIMOTMetric(), ] else: logger.warning("Metric not support for metric type {}".format( self.cfg.metric)) self._metrics = [] def _reset_metrics(self): for metric in self._metrics: metric.reset() def register_callbacks(self, callbacks): callbacks = [h for h in list(callbacks) if h is not None] for c in callbacks: assert isinstance(c, Callback), \ "metrics shoule be instances of subclass of Metric" self._callbacks.extend(callbacks) self._compose_callback = ComposeCallback(self._callbacks) def register_metrics(self, metrics): metrics = [m for m in list(metrics) if m is not None] for m in metrics: assert isinstance(m, Metric), \ "metrics shoule be instances of subclass of Metric" self._metrics.extend(metrics) def load_weights_jde(self, weights): load_weight(self.model, weights, self.optimizer) def load_weights_sde(self, det_weights, reid_weights): if self.model.detector: load_weight(self.model.detector, det_weights) load_weight(self.model.reid, reid_weights) else: load_weight(self.model.reid, reid_weights, self.optimizer) def _eval_seq_jde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, draw_threshold=0): if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) tracker = self.model.tracker tracker.max_time_lost = int(frame_rate / 30.0 * tracker.track_buffer) timer = MOTTimer() frame_id = 0 self.status['mode'] = 'track' self.model.eval() results = defaultdict(list) # support single class and multi classes for step_id, data in enumerate(dataloader): self.status['step_id'] = step_id if frame_id % 40 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format( frame_id, 1. / max(1e-5, timer.average_time))) # forward timer.tic() pred_dets, pred_embs = self.model(data) pred_dets, pred_embs = pred_dets.numpy(), pred_embs.numpy() online_targets_dict = self.model.tracker.update(pred_dets, pred_embs) online_tlwhs = defaultdict(list) online_scores = defaultdict(list) online_ids = defaultdict(list) for cls_id in range(self.cfg.num_classes): online_targets = online_targets_dict[cls_id] for t in online_targets: tlwh = t.tlwh tid = t.track_id tscore = t.score if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs[cls_id].append(tlwh) online_ids[cls_id].append(tid) online_scores[cls_id].append(tscore) # save results results[cls_id].append( (frame_id + 1, online_tlwhs[cls_id], online_scores[cls_id], online_ids[cls_id])) timer.toc() save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def _eval_seq_sde(self, dataloader, save_dir=None, show_image=False, frame_rate=30, seq_name='', scaled=False, det_file='', draw_threshold=0): if save_dir: if not os.path.exists(save_dir): os.makedirs(save_dir) use_detector = False if not self.model.detector else True timer = MOTTimer() results = defaultdict(list) frame_id = 0 self.status['mode'] = 'track' self.model.eval() self.model.reid.eval() if not use_detector: dets_list = load_det_results(det_file, len(dataloader)) logger.info('Finish loading detection results file {}.'.format( det_file)) for step_id, data in enumerate(dataloader): self.status['step_id'] = step_id if frame_id % 40 == 0: logger.info('Processing frame {} ({:.2f} fps)'.format( frame_id, 1. / max(1e-5, timer.average_time))) ori_image = data['ori_image'] # [bs, H, W, 3] ori_image_shape = data['ori_image'].shape[1:3] # ori_image_shape: [H, W] input_shape = data['image'].shape[2:] # input_shape: [h, w], before data transforms, set in model config im_shape = data['im_shape'][0].numpy() # im_shape: [new_h, new_w], after data transforms scale_factor = data['scale_factor'][0].numpy() empty_detections = False # when it has no detected bboxes, will not inference reid model # and if visualize, use original image instead # forward timer.tic() if not use_detector: dets = dets_list[frame_id] bbox_tlwh = np.array(dets['bbox'], dtype='float32') if bbox_tlwh.shape[0] > 0: # detector outputs: pred_cls_ids, pred_scores, pred_bboxes pred_cls_ids = np.array(dets['cls_id'], dtype='float32') pred_scores = np.array(dets['score'], dtype='float32') pred_bboxes = np.concatenate( (bbox_tlwh[:, 0:2], bbox_tlwh[:, 2:4] + bbox_tlwh[:, 0:2]), axis=1) else: logger.warning( 'Frame {} has not object, try to modify score threshold.'. format(frame_id)) empty_detections = True else: outs = self.model.detector(data) outs['bbox'] = outs['bbox'].numpy() outs['bbox_num'] = outs['bbox_num'].numpy() if outs['bbox_num'] > 0 and empty_detections == False: # detector outputs: pred_cls_ids, pred_scores, pred_bboxes pred_cls_ids = outs['bbox'][:, 0:1] pred_scores = outs['bbox'][:, 1:2] if not scaled: # Note: scaled=False only in JDE YOLOv3 or other detectors # with LetterBoxResize and JDEBBoxPostProcess. # # 'scaled' means whether the coords after detector outputs # have been scaled back to the original image, set True # in general detector, set False in JDE YOLOv3. pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape, im_shape, scale_factor) else: pred_bboxes = outs['bbox'][:, 2:] else: logger.warning( 'Frame {} has not detected object, try to modify score threshold.'. format(frame_id)) empty_detections = True if not empty_detections: pred_xyxys, keep_idx = clip_box(pred_bboxes, ori_image_shape) if len(keep_idx[0]) == 0: logger.warning( 'Frame {} has not detected object left after clip_box.'. format(frame_id)) empty_detections = True if empty_detections: timer.toc() # if visualize, use original image instead online_ids, online_tlwhs, online_scores = None, None, None save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes) frame_id += 1 # thus will not inference reid model continue pred_cls_ids = pred_cls_ids[keep_idx[0]] pred_scores = pred_scores[keep_idx[0]] pred_tlwhs = np.concatenate( (pred_xyxys[:, 0:2], pred_xyxys[:, 2:4] - pred_xyxys[:, 0:2] + 1), axis=1) pred_dets = np.concatenate( (pred_cls_ids, pred_scores, pred_tlwhs), axis=1) tracker = self.model.tracker crops = get_crops( pred_xyxys, ori_image, w=tracker.input_size[0], h=tracker.input_size[1]) crops = paddle.to_tensor(crops) data.update({'crops': crops}) pred_embs = self.model(data).numpy() tracker.predict() online_targets = tracker.update(pred_dets, pred_embs) online_tlwhs, online_scores, online_ids = [], [], [] for t in online_targets: if not t.is_confirmed() or t.time_since_update > 1: continue tlwh = t.to_tlwh() tscore = t.score tid = t.track_id if tscore < draw_threshold: continue if tlwh[2] * tlwh[3] <= tracker.min_box_area: continue if tracker.vertical_ratio > 0 and tlwh[2] / tlwh[ 3] > tracker.vertical_ratio: continue online_tlwhs.append(tlwh) online_scores.append(tscore) online_ids.append(tid) timer.toc() # save results results[0].append( (frame_id + 1, online_tlwhs, online_scores, online_ids)) save_vis_results(data, frame_id, online_ids, online_tlwhs, online_scores, timer.average_time, show_image, save_dir, self.cfg.num_classes) frame_id += 1 return results, frame_id, timer.average_time, timer.calls def mot_evaluate(self, data_root, seqs, output_dir, data_type='mot', model_type='JDE', save_images=False, save_videos=False, show_image=False, scaled=False, det_results_dir=''): if not os.path.exists(output_dir): os.makedirs(output_dir) result_root = os.path.join(output_dir, 'mot_results') if not os.path.exists(result_root): os.makedirs(result_root) assert data_type in ['mot', 'mcmot', 'kitti'], \ "data_type should be 'mot', 'mcmot' or 'kitti'" assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \ "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'" # run tracking n_frame = 0 timer_avgs, timer_calls = [], [] for seq in seqs: infer_dir = os.path.join(data_root, seq) if not os.path.exists(infer_dir) or not os.path.isdir(infer_dir): logger.warning("Seq {} error, {} has no images.".format( seq, infer_dir)) continue if os.path.exists(os.path.join(infer_dir, 'img1')): infer_dir = os.path.join(infer_dir, 'img1') frame_rate = 30 seqinfo = os.path.join(data_root, seq, 'seqinfo.ini') if os.path.exists(seqinfo): meta_info = open(seqinfo).read() frame_rate = int(meta_info[meta_info.find('frameRate') + 10: meta_info.find('\nseqLength')]) save_dir = os.path.join(output_dir, 'mot_outputs', seq) if save_images or save_videos else None logger.info('start seq: {}'.format(seq)) self.dataset.set_images(self.get_infer_images(infer_dir)) dataloader = create('EvalMOTReader')(self.dataset, 0) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) with paddle.no_grad(): if model_type in ['JDE', 'FairMOT']: results, nf, ta, tc = self._eval_seq_jde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate) elif model_type in ['DeepSORT']: results, nf, ta, tc = self._eval_seq_sde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, seq_name=seq, scaled=scaled, det_file=os.path.join(det_results_dir, '{}.txt'.format(seq))) else: raise ValueError(model_type) write_mot_results(result_filename, results, data_type, self.cfg.num_classes) n_frame += nf timer_avgs.append(ta) timer_calls.append(tc) if save_videos: output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format( save_dir, output_video_path) os.system(cmd_str) logger.info('Save video in {}.'.format(output_video_path)) logger.info('Evaluate seq: {}'.format(seq)) # update metrics for metric in self._metrics: metric.update(data_root, seq, data_type, result_root, result_filename) timer_avgs = np.asarray(timer_avgs) timer_calls = np.asarray(timer_calls) all_time = np.dot(timer_avgs, timer_calls) avg_time = all_time / np.sum(timer_calls) logger.info('Time elapsed: {:.2f} seconds, FPS: {:.2f}'.format( all_time, 1.0 / avg_time)) # accumulate metric to log out for metric in self._metrics: metric.accumulate() metric.log() # reset metric states for metric may performed multiple times self._reset_metrics() def get_infer_images(self, infer_dir): assert infer_dir is None or os.path.isdir(infer_dir), \ "{} is not a directory".format(infer_dir) images = set() assert os.path.isdir(infer_dir), \ "infer_dir {} is not a directory".format(infer_dir) exts = ['jpg', 'jpeg', 'png', 'bmp'] exts += [ext.upper() for ext in exts] for ext in exts: images.update(glob.glob('{}/*.{}'.format(infer_dir, ext))) images = list(images) images.sort() assert len(images) > 0, "no image found in {}".format(infer_dir) logger.info("Found {} inference images in total.".format(len(images))) return images def mot_predict_seq(self, video_file, frame_rate, image_dir, output_dir, data_type='mot', model_type='JDE', save_images=False, save_videos=True, show_image=False, scaled=False, det_results_dir='', draw_threshold=0.5): assert video_file is not None or image_dir is not None, \ "--video_file or --image_dir should be set." assert video_file is None or os.path.isfile(video_file), \ "{} is not a file".format(video_file) assert image_dir is None or os.path.isdir(image_dir), \ "{} is not a directory".format(image_dir) if not os.path.exists(output_dir): os.makedirs(output_dir) result_root = os.path.join(output_dir, 'mot_results') if not os.path.exists(result_root): os.makedirs(result_root) assert data_type in ['mot', 'mcmot', 'kitti'], \ "data_type should be 'mot', 'mcmot' or 'kitti'" assert model_type in ['JDE', 'DeepSORT', 'FairMOT'], \ "model_type should be 'JDE', 'DeepSORT' or 'FairMOT'" # run tracking if video_file: seq = video_file.split('/')[-1].split('.')[0] self.dataset.set_video(video_file, frame_rate) logger.info('Starting tracking video {}'.format(video_file)) elif image_dir: seq = image_dir.split('/')[-1].split('.')[0] if os.path.exists(os.path.join(image_dir, 'img1')): image_dir = os.path.join(image_dir, 'img1') images = [ '{}/{}'.format(image_dir, x) for x in os.listdir(image_dir) ] images.sort() self.dataset.set_images(images) logger.info('Starting tracking folder {}, found {} images'.format( image_dir, len(images))) else: raise ValueError('--video_file or --image_dir should be set.') save_dir = os.path.join(output_dir, 'mot_outputs', seq) if save_images or save_videos else None dataloader = create('TestMOTReader')(self.dataset, 0) result_filename = os.path.join(result_root, '{}.txt'.format(seq)) if frame_rate == -1: frame_rate = self.dataset.frame_rate with paddle.no_grad(): if model_type in ['JDE', 'FairMOT']: results, nf, ta, tc = self._eval_seq_jde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, draw_threshold=draw_threshold) elif model_type in ['DeepSORT']: results, nf, ta, tc = self._eval_seq_sde( dataloader, save_dir=save_dir, show_image=show_image, frame_rate=frame_rate, seq_name=seq, scaled=scaled, det_file=os.path.join(det_results_dir, '{}.txt'.format(seq)), draw_threshold=draw_threshold) else: raise ValueError(model_type) if save_videos: output_video_path = os.path.join(save_dir, '..', '{}_vis.mp4'.format(seq)) cmd_str = 'ffmpeg -f image2 -i {}/%05d.jpg {}'.format( save_dir, output_video_path) os.system(cmd_str) logger.info('Save video in {}'.format(output_video_path)) write_mot_results(result_filename, results, data_type, self.cfg.num_classes)