# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.modeling.mot.utils import scale_coords from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['JDE'] @register class JDE(BaseArch): __category__ = 'architecture' __shared__ = ['metric'] """ JDE network, see https://arxiv.org/abs/1909.12605v1 Args: detector (object): detector model instance reid (object): reid model instance tracker (object): tracker instance metric (str): 'MOTDet' for training and detection evaluation, 'ReID' for ReID embedding evaluation, or 'MOT' for multi object tracking evaluation. """ def __init__(self, detector='YOLOv3', reid='JDEEmbeddingHead', tracker='JDETracker', metric='MOT'): super(JDE, self).__init__() self.detector = detector self.reid = reid self.tracker = tracker self.metric = metric @classmethod def from_config(cls, cfg, *args, **kwargs): detector = create(cfg['detector']) kwargs = {'input_shape': detector.neck.out_shape} reid = create(cfg['reid'], **kwargs) tracker = create(cfg['tracker']) return { "detector": detector, "reid": reid, "tracker": tracker, } def _forward(self): det_outs = self.detector(self.inputs) if self.training: emb_feats = det_outs['emb_feats'] loss_confs = det_outs['det_losses']['loss_confs'] loss_boxes = det_outs['det_losses']['loss_boxes'] jde_losses = self.reid(emb_feats, self.inputs, loss_confs, loss_boxes) return jde_losses else: if self.metric == 'MOTDet': det_results = { 'bbox': det_outs['bbox'], 'bbox_num': det_outs['bbox_num'], } return det_results elif self.metric == 'ReID': emb_feats = det_outs['emb_feats'] embs_and_gts = self.reid(emb_feats, self.inputs, test_emb=True) return embs_and_gts elif self.metric == 'MOT': emb_feats = det_outs['emb_feats'] emb_outs = self.reid(emb_feats, self.inputs) boxes_idx = det_outs['boxes_idx'] bbox = det_outs['bbox'] input_shape = self.inputs['image'].shape[2:] im_shape = self.inputs['im_shape'] scale_factor = self.inputs['scale_factor'] bbox[:, 2:] = scale_coords(bbox[:, 2:], input_shape, im_shape, scale_factor) nms_keep_idx = det_outs['nms_keep_idx'] pred_dets = paddle.concat((bbox[:, 2:], bbox[:, 1:2]), axis=1) boxes_idx = paddle.cast(boxes_idx, 'int64') emb_valid = paddle.gather_nd(emb_outs, boxes_idx) pred_embs = paddle.gather_nd(emb_valid, nms_keep_idx) return pred_dets, pred_embs else: raise ValueError("Unknown metric {} for multi object tracking.". format(self.metric)) def get_loss(self): return self._forward() def get_pred(self): return self._forward()