# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch __all__ = ['FairMOT'] @register class FairMOT(BaseArch): """ FairMOT network, see http://arxiv.org/abs/2004.01888 Args: detector (object): 'CenterNet' instance reid (object): 'FairMOTEmbeddingHead' instance tracker (object): 'JDETracker' instance loss (object): 'FairMOTLoss' instance """ __category__ = 'architecture' __inject__ = ['loss'] def __init__(self, detector='CenterNet', reid='FairMOTEmbeddingHead', tracker='JDETracker', loss='FairMOTLoss'): super(FairMOT, self).__init__() self.detector = detector self.reid = reid self.tracker = tracker self.loss = loss @classmethod def from_config(cls, cfg, *args, **kwargs): detector = create(cfg['detector']) kwargs = {'input_shape': detector.neck.out_shape} reid = create(cfg['reid'], **kwargs) loss = create(cfg['loss']) tracker = create(cfg['tracker']) return { 'detector': detector, 'reid': reid, 'loss': loss, 'tracker': tracker } def _forward(self): loss = dict() # det_outs keys: # train: det_loss, heatmap_loss, size_loss, offset_loss, neck_feat # eval/infer: bbox, bbox_inds, neck_feat det_outs = self.detector(self.inputs) neck_feat = det_outs['neck_feat'] if self.training: reid_loss = self.reid(neck_feat, self.inputs) det_loss = det_outs['det_loss'] loss = self.loss(det_loss, reid_loss) loss.update({ 'heatmap_loss': det_outs['heatmap_loss'], 'size_loss': det_outs['size_loss'], 'offset_loss': det_outs['offset_loss'], 'reid_loss': reid_loss }) return loss else: embedding = self.reid(neck_feat, self.inputs) bbox_inds = det_outs['bbox_inds'] embedding = paddle.transpose(embedding, [0, 2, 3, 1]) embedding = paddle.reshape(embedding, [-1, paddle.shape(embedding)[-1]]) pred_embs = paddle.gather(embedding, bbox_inds) pred_dets = det_outs['bbox'] return pred_dets, pred_embs def get_pred(self): output = self._forward() return output def get_loss(self): loss = self._forward() return loss