# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register, create from .meta_arch import BaseArch from ppdet.modeling.mot.utils import Detection, get_crops, scale_coords, clip_box __all__ = ['DeepSORT'] @register class DeepSORT(BaseArch): """ DeepSORT network, see https://arxiv.org/abs/1703.07402 Args: detector (object): detector model instance reid (object): reid model instance tracker (object): tracker instance """ __category__ = 'architecture' def __init__(self, detector='YOLOv3', reid='PCBPyramid', tracker='DeepSORTTracker'): super(DeepSORT, self).__init__() self.detector = detector self.reid = reid self.tracker = tracker @classmethod def from_config(cls, cfg, *args, **kwargs): if cfg['detector'] != 'None': detector = create(cfg['detector']) else: detector = None reid = create(cfg['reid']) tracker = create(cfg['tracker']) return { "detector": detector, "reid": reid, "tracker": tracker, } def _forward(self): load_dets = 'pred_bboxes' in self.inputs and 'pred_scores' in self.inputs ori_image = self.inputs['ori_image'] input_shape = self.inputs['image'].shape[2:] im_shape = self.inputs['im_shape'] scale_factor = self.inputs['scale_factor'] if self.detector and not load_dets: outs = self.detector(self.inputs) if outs['bbox_num'] > 0: pred_bboxes = scale_coords(outs['bbox'][:, 2:], input_shape, im_shape, scale_factor) pred_scores = outs['bbox'][:, 1:2] else: pred_bboxes = [] pred_scores = [] else: pred_bboxes = self.inputs['pred_bboxes'] pred_scores = self.inputs['pred_scores'] if len(pred_bboxes) > 0: pred_bboxes = clip_box(pred_bboxes, input_shape, im_shape, scale_factor) bbox_tlwh = paddle.concat( (pred_bboxes[:, 0:2], pred_bboxes[:, 2:4] - pred_bboxes[:, 0:2] + 1), axis=1) crops, pred_scores = get_crops( pred_bboxes, ori_image, pred_scores, w=64, h=192) if len(crops) > 0: features = self.reid(paddle.to_tensor(crops)) detections = [Detection(bbox_tlwh[i], conf, features[i])\ for i, conf in enumerate(pred_scores)] else: detections = [] else: detections = [] return detections def get_pred(self): return self._forward()