# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import time import yaml import cv2 import numpy as np import paddle from benchmark_utils import PaddleInferBenchmark from preprocess import preprocess, NormalizeImage, Permute from mot_preprocess import LetterBoxResize from tracker import JDETracker from ppdet.modeling.mot import visualization as mot_vis from ppdet.modeling.mot.utils import Timer as MOTTimer from paddle.inference import Config from paddle.inference import create_predictor from utils import argsparser, Timer, get_current_memory_mb from infer import get_test_images, print_arguments # Global dictionary MOT_SUPPORT_MODELS = { 'JDE', 'FairMOT', } class MOT_Detector(object): """ Args: pred_config (object): config of model, defined by `Config(model_dir)` model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml use_gpu (bool): whether use gpu run_mode (str): mode of running(fluid/trt_fp32/trt_fp16) batch_size (int): size of pre batch in inference trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN """ def __init__(self, pred_config, model_dir, use_gpu=False, run_mode='fluid', batch_size=1, trt_min_shape=1, trt_max_shape=1088, trt_opt_shape=608, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): self.pred_config = pred_config self.predictor, self.config = load_predictor( model_dir, run_mode=run_mode, batch_size=batch_size, min_subgraph_size=self.pred_config.min_subgraph_size, use_gpu=use_gpu, use_dynamic_shape=self.pred_config.use_dynamic_shape, trt_min_shape=trt_min_shape, trt_max_shape=trt_max_shape, trt_opt_shape=trt_opt_shape, trt_calib_mode=trt_calib_mode, cpu_threads=cpu_threads, enable_mkldnn=enable_mkldnn) self.det_times = Timer() self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0 self.tracker = JDETracker() def preprocess(self, im): preprocess_ops = [] for op_info in self.pred_config.preprocess_infos: new_op_info = op_info.copy() op_type = new_op_info.pop('type') preprocess_ops.append(eval(op_type)(**new_op_info)) im, im_info = preprocess(im, preprocess_ops) inputs = create_inputs(im, im_info) return inputs def postprocess(self, pred_dets, pred_embs): online_targets = self.tracker.update(pred_dets, pred_embs) online_tlwhs, online_ids = [], [] for t in online_targets: tlwh = t.tlwh tid = t.track_id vertical = tlwh[2] / tlwh[3] > 1.6 if tlwh[2] * tlwh[3] > self.tracker.min_box_area and not vertical: online_tlwhs.append(tlwh) online_ids.append(tid) return online_tlwhs, online_ids def predict(self, image, threshold=0.5, repeats=1): ''' Args: image (dict): dict(['image', 'im_shape', 'scale_factor']) threshold (float): threshold of predicted box' score Returns: online_tlwhs, online_ids (np.ndarray) ''' self.det_times.preprocess_time_s.start() inputs = self.preprocess(image) self.det_times.preprocess_time_s.end() pred_dets, pred_embs = None, None input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor.copy_from_cpu(inputs[input_names[i]]) self.det_times.inference_time_s.start() for i in range(repeats): self.predictor.run() output_names = self.predictor.get_output_names() boxes_tensor = self.predictor.get_output_handle(output_names[0]) pred_dets = boxes_tensor.copy_to_cpu() embs_tensor = self.predictor.get_output_handle(output_names[1]) pred_embs = embs_tensor.copy_to_cpu() self.det_times.inference_time_s.end(repeats=repeats) self.det_times.postprocess_time_s.start() online_tlwhs, online_ids = self.postprocess(pred_dets, pred_embs) self.det_times.postprocess_time_s.end() self.det_times.img_num += 1 return online_tlwhs, online_ids def create_inputs(im, im_info): """generate input for different model type Args: im (np.ndarray): image (np.ndarray) im_info (dict): info of image model_arch (str): model type Returns: inputs (dict): input of model """ inputs = {} inputs['image'] = np.array((im, )).astype('float32') inputs['im_shape'] = np.array((im_info['im_shape'], )).astype('float32') inputs['scale_factor'] = np.array( (im_info['scale_factor'], )).astype('float32') return inputs class PredictConfig_MOT(): """set config of preprocess, postprocess and visualize Args: model_dir (str): root path of model.yml """ def __init__(self, model_dir): # parsing Yaml config for Preprocess deploy_file = os.path.join(model_dir, 'infer_cfg.yml') with open(deploy_file) as f: yml_conf = yaml.safe_load(f) self.check_model(yml_conf) self.arch = yml_conf['arch'] self.preprocess_infos = yml_conf['Preprocess'] self.min_subgraph_size = yml_conf['min_subgraph_size'] self.labels = yml_conf['label_list'] self.mask = False self.use_dynamic_shape = yml_conf['use_dynamic_shape'] if 'mask' in yml_conf: self.mask = yml_conf['mask'] self.print_config() def check_model(self, yml_conf): """ Raises: ValueError: loaded model not in supported model type """ for support_model in MOT_SUPPORT_MODELS: if support_model in yml_conf['arch']: return True raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[ 'arch'], MOT_SUPPORT_MODELS)) def print_config(self): print('----------- Model Configuration -----------') print('%s: %s' % ('Model Arch', self.arch)) print('%s: ' % ('Transform Order')) for op_info in self.preprocess_infos: print('--%s: %s' % ('transform op', op_info['type'])) print('--------------------------------------------') def load_predictor(model_dir, run_mode='fluid', batch_size=1, use_gpu=False, min_subgraph_size=3, use_dynamic_shape=False, trt_min_shape=1, trt_max_shape=1088, trt_opt_shape=608, trt_calib_mode=False, cpu_threads=1, enable_mkldnn=False): """set AnalysisConfig, generate AnalysisPredictor Args: model_dir (str): root path of __model__ and __params__ run_mode (str): mode of running(fluid/trt_fp32/trt_fp16/trt_int8) batch_size (int): size of pre batch in inference use_gpu (bool): whether use gpu use_dynamic_shape (bool): use dynamic shape or not trt_min_shape (int): min shape for dynamic shape in trt trt_max_shape (int): max shape for dynamic shape in trt trt_opt_shape (int): opt shape for dynamic shape in trt trt_calib_mode (bool): If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True cpu_threads (int): cpu threads enable_mkldnn (bool): whether to open MKLDNN Returns: predictor (PaddlePredictor): AnalysisPredictor Raises: ValueError: predict by TensorRT need use_gpu == True. """ if not use_gpu and not run_mode == 'fluid': raise ValueError( "Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}" .format(run_mode, use_gpu)) config = Config( os.path.join(model_dir, 'model.pdmodel'), os.path.join(model_dir, 'model.pdiparams')) precision_map = { 'trt_int8': Config.Precision.Int8, 'trt_fp32': Config.Precision.Float32, 'trt_fp16': Config.Precision.Half } if use_gpu: # initial GPU memory(M), device ID config.enable_use_gpu(200, 0) # optimize graph and fuse op config.switch_ir_optim(True) else: config.disable_gpu() config.set_cpu_math_library_num_threads(cpu_threads) if enable_mkldnn: try: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() except Exception as e: print( "The current environment does not support `mkldnn`, so disable mkldnn." ) pass if run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=1 << 10, max_batch_size=batch_size, min_subgraph_size=min_subgraph_size, precision_mode=precision_map[run_mode], use_static=False, use_calib_mode=trt_calib_mode) if use_dynamic_shape: min_input_shape = {'image': [1, 3, trt_min_shape, trt_min_shape]} max_input_shape = {'image': [1, 3, trt_max_shape, trt_max_shape]} opt_input_shape = {'image': [1, 3, trt_opt_shape, trt_opt_shape]} config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape, opt_input_shape) print('trt set dynamic shape done!') # disable print log when predict config.disable_glog_info() # enable shared memory config.enable_memory_optim() # disable feed, fetch OP, needed by zero_copy_run config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor, config def predict_video(detector, camera_id): if camera_id != -1: capture = cv2.VideoCapture(camera_id) video_name = 'mot_output.mp4' else: capture = cv2.VideoCapture(FLAGS.video_file) video_name = os.path.split(FLAGS.video_file)[-1] fps = 30 frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT)) print('frame_count', frame_count) width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) # yapf: disable fourcc = cv2.VideoWriter_fourcc(*'mp4v') # yapf: enable if not os.path.exists(FLAGS.output_dir): os.makedirs(FLAGS.output_dir) out_path = os.path.join(FLAGS.output_dir, video_name) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) frame_id = 0 timer = MOTTimer() while (1): ret, frame = capture.read() if not ret: break timer.tic() online_tlwhs, online_ids = detector.predict(frame, FLAGS.threshold) timer.toc() online_im = mot_vis.plot_tracking( frame, online_tlwhs, online_ids, frame_id=frame_id, fps=1. / timer.average_time) frame_id += 1 print('detect frame:%d' % (frame_id)) im = np.array(online_im) writer.write(im) if camera_id != -1: cv2.imshow('Tracking Detection', im) if cv2.waitKey(1) & 0xFF == ord('q'): break writer.release() def main(): pred_config = PredictConfig_MOT(FLAGS.model_dir) detector = MOT_Detector( pred_config, FLAGS.model_dir, use_gpu=FLAGS.use_gpu, run_mode=FLAGS.run_mode, trt_min_shape=FLAGS.trt_min_shape, trt_max_shape=FLAGS.trt_max_shape, trt_opt_shape=FLAGS.trt_opt_shape, trt_calib_mode=FLAGS.trt_calib_mode, cpu_threads=FLAGS.cpu_threads, enable_mkldnn=FLAGS.enable_mkldnn) # predict from video file or camera video stream if FLAGS.video_file is not None or FLAGS.camera_id != -1: predict_video(detector, FLAGS.camera_id) else: print('MOT models do not support predict single image.') if __name__ == '__main__': paddle.enable_static() parser = argsparser() FLAGS = parser.parse_args() print_arguments(FLAGS) main()