// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include #include #include #include #include #include "paddle_inference_api.h" // NOLINT #include "include/preprocess_op.h" #include "include/config_parser.h" namespace PaddleDetection { // Object Detection Result struct ObjectResult { // Rectangle coordinates of detected object: left, right, top, down std::vector rect; // Class id of detected object int class_id; // Confidence of detected object float confidence; }; // Generate visualization colormap for each class std::vector GenerateColorMap(int num_class); // Visualiztion Detection Result cv::Mat VisualizeResult(const cv::Mat& img, const std::vector& results, const std::vector& lable_list, const std::vector& colormap); class ObjectDetector { public: explicit ObjectDetector(const std::string& model_dir, bool use_gpu=false, const std::string& run_mode="fluid", const int gpu_id=0, bool trt_calib_mode=false) { config_.load_config(model_dir); threshold_ = config_.draw_threshold_; preprocessor_.Init(config_.preprocess_info_, config_.arch_); LoadModel(model_dir, use_gpu, config_.min_subgraph_size_, 1, run_mode, gpu_id, trt_calib_mode); } // Load Paddle inference model void LoadModel( const std::string& model_dir, bool use_gpu, const int min_subgraph_size, const int batch_size = 1, const std::string& run_mode = "fluid", const int gpu_id=0, bool trt_calib_mode=false); // Run predictor void Predict(const cv::Mat& im, const double threshold = 0.5, const int warmup = 0, const int repeats = 1, const bool run_benchmark = false, std::vector* result = nullptr); // Get Model Label list const std::vector& GetLabelList() const { return config_.label_list_; } private: // Preprocess image and copy data to input buffer void Preprocess(const cv::Mat& image_mat); // Postprocess result void Postprocess( const cv::Mat& raw_mat, std::vector* result); std::unique_ptr predictor_; Preprocessor preprocessor_; ImageBlob inputs_; std::vector output_data_; float threshold_; ConfigPaser config_; }; } // namespace PaddleDetection