_BASE_: [ '../datasets/coco_instance.yml', '../runtime.yml', '_base_/solov2_r50_fpn.yml', '_base_/optimizer_1x.yml', '_base_/solov2_light_reader.yml', ] pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_vd_ssld_v2_pretrained.pdparams weights: output/solov2_r50_fpn_3x_coco/model_final epoch: 36 use_ema: true ema_decay: 0.9998 ResNet: depth: 50 variant: d freeze_at: 0 freeze_norm: false norm_type: sync_bn return_idx: [0,1,2,3] dcn_v2_stages: [1,2,3] lr_mult_list: [0.05, 0.05, 0.1, 0.15] num_stages: 4 SOLOv2Head: seg_feat_channels: 256 stacked_convs: 3 num_grids: [40, 36, 24, 16, 12] kernel_out_channels: 128 solov2_loss: SOLOv2Loss mask_nms: MaskMatrixNMS dcn_v2_stages: [2] drop_block: True SOLOv2MaskHead: mid_channels: 128 out_channels: 128 start_level: 0 end_level: 3 use_dcn_in_tower: True LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [24, 33] - !LinearWarmup start_factor: 0. steps: 1000