#!/bin/bash FILENAME=$1 # MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer'] MODE=$2 dataline=$(cat ${FILENAME}) # parser params IFS=$'\n' lines=(${dataline}) function func_parser_key(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[0]} echo ${tmp} } function func_parser_value(){ strs=$1 IFS=":" array=(${strs}) tmp=${array[1]} echo ${tmp} } function func_set_params(){ key=$1 value=$2 if [ ${key} = "null" ];then echo " " elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then echo " " else echo "${key}=${value}" fi } function func_parser_params(){ strs=$1 IFS=":" array=(${strs}) key=${array[0]} tmp=${array[1]} IFS="|" res="" for _params in ${tmp[*]}; do IFS="=" array=(${_params}) mode=${array[0]} value=${array[1]} if [[ ${mode} = ${MODE} ]]; then IFS="|" #echo $(func_set_params "${mode}" "${value}") echo $value break fi IFS="|" done echo ${res} } function status_check(){ last_status=$1 # the exit code run_command=$2 run_log=$3 if [ $last_status -eq 0 ]; then echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log} else echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log} fi } IFS=$'\n' # The training params model_name=$(func_parser_value "${lines[1]}") python=$(func_parser_value "${lines[2]}") gpu_list=$(func_parser_value "${lines[3]}") train_use_gpu_key=$(func_parser_key "${lines[4]}") train_use_gpu_value=$(func_parser_value "${lines[4]}") autocast_list=$(func_parser_value "${lines[5]}") autocast_key=$(func_parser_key "${lines[5]}") epoch_key=$(func_parser_key "${lines[6]}") epoch_num=$(func_parser_params "${lines[6]}") save_model_key=$(func_parser_key "${lines[7]}") train_batch_key=$(func_parser_key "${lines[8]}") train_batch_value=$(func_parser_params "${lines[8]}") pretrain_model_key=$(func_parser_key "${lines[9]}") pretrain_model_value=$(func_parser_value "${lines[9]}") train_model_name=$(func_parser_value "${lines[10]}") train_infer_img_dir=$(func_parser_value "${lines[11]}") train_param_key1=$(func_parser_key "${lines[12]}") train_param_value1=$(func_parser_value "${lines[12]}") trainer_list=$(func_parser_value "${lines[14]}") trainer_norm=$(func_parser_key "${lines[15]}") norm_trainer=$(func_parser_value "${lines[15]}") pact_key=$(func_parser_key "${lines[16]}") pact_trainer=$(func_parser_value "${lines[16]}") fpgm_key=$(func_parser_key "${lines[17]}") fpgm_trainer=$(func_parser_value "${lines[17]}") distill_key=$(func_parser_key "${lines[18]}") distill_trainer=$(func_parser_value "${lines[18]}") trainer_key1=$(func_parser_key "${lines[19]}") trainer_value1=$(func_parser_value "${lines[19]}") trainer_key2=$(func_parser_key "${lines[20]}") trainer_value2=$(func_parser_value "${lines[20]}") eval_py=$(func_parser_value "${lines[23]}") eval_key1=$(func_parser_key "${lines[24]}") eval_value1=$(func_parser_value "${lines[24]}") save_infer_key=$(func_parser_key "${lines[27]}") export_weight=$(func_parser_key "${lines[28]}") norm_export=$(func_parser_value "${lines[29]}") pact_export=$(func_parser_value "${lines[30]}") fpgm_export=$(func_parser_value "${lines[31]}") distill_export=$(func_parser_value "${lines[32]}") export_key1=$(func_parser_key "${lines[33]}") export_value1=$(func_parser_value "${lines[33]}") export_key2=$(func_parser_key "${lines[34]}") export_value2=$(func_parser_value "${lines[34]}") inference_py=$(func_parser_value "${lines[36]}") use_gpu_key=$(func_parser_key "${lines[37]}") use_gpu_list=$(func_parser_value "${lines[37]}") use_mkldnn_key=$(func_parser_key "${lines[38]}") use_mkldnn_list=$(func_parser_value "${lines[38]}") cpu_threads_key=$(func_parser_key "${lines[39]}") cpu_threads_list=$(func_parser_value "${lines[39]}") batch_size_key=$(func_parser_key "${lines[40]}") batch_size_list=$(func_parser_value "${lines[40]}") use_trt_key=$(func_parser_key "${lines[41]}") use_trt_list=$(func_parser_value "${lines[41]}") precision_key=$(func_parser_key "${lines[42]}") precision_list=$(func_parser_value "${lines[42]}") infer_model_key=$(func_parser_key "${lines[43]}") infer_model=$(func_parser_value "${lines[43]}") image_dir_key=$(func_parser_key "${lines[44]}") infer_img_dir=$(func_parser_value "${lines[44]}") save_log_key=$(func_parser_key "${lines[45]}") benchmark_key=$(func_parser_key "${lines[46]}") benchmark_value=$(func_parser_value "${lines[46]}") infer_key1=$(func_parser_key "${lines[47]}") infer_value1=$(func_parser_value "${lines[47]}") LOG_PATH="./tests/output" mkdir -p ${LOG_PATH} status_log="${LOG_PATH}/results.log" function func_inference(){ IFS='|' _python=$1 _script=$2 _model_dir=$3 _log_path=$4 _img_dir=$5 _flag_quant=$6 # inference for use_gpu in ${use_gpu_list[*]}; do if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then for use_mkldnn in ${use_mkldnn_list[*]}; do if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then continue fi for threads in ${cpu_threads_list[*]}; do for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} 2>&1 | tee ${_save_log_path} " echo $command #eval $command #status_check $? "${command}" "${status_log}" done done done elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then for use_trt in ${use_trt_list[*]}; do for precision in ${precision_list[*]}; do if [ ${use_trt} = "False" ] && [ ${precision} != "fp32" ]; then continue fi if [[ ${use_trt} = "False" || ${precision} != "int8" ]] && [ ${_flag_quant} = "True" ]; then continue fi for batch_size in ${batch_size_list[*]}; do _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log" set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") set_precision=$(func_set_params "${precision_key}" "${precision}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") #command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} 2>&1 | tee ${_save_log_path}" command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path}" eval $command status_check $? "${command}" "${status_log}" done done done else echo "Currently does not support hardware other than CPU and GPU" fi done } if [ ${MODE} = "infer" ]; then GPUID=$3 if [ ${#GPUID} -le 0 ];then env=" " else env="export CUDA_VISIBLE_DEVICES=${GPUID}" fi echo $env #run inference func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" "False" else IFS="|" export Count=0 USE_GPU_KEY=(${train_use_gpu_value}) for gpu in ${gpu_list[*]}; do use_gpu=${USE_GPU_KEY[Count]} Count=$(($Count + 1)) if [ ${gpu} = "-1" ];then env="" elif [ ${#gpu} -le 1 ];then env="export CUDA_VISIBLE_DEVICES=${gpu}" eval ${env} elif [ ${#gpu} -le 15 ];then IFS="," array=(${gpu}) env="export CUDA_VISIBLE_DEVICES=${array[0]}" IFS="|" else IFS=";" array=(${gpu}) ips=${array[0]} gpu=${array[1]} IFS="|" env=" " fi for autocast in ${autocast_list[*]}; do for trainer in ${trainer_list[*]}; do flag_quant=False if [ ${trainer} = ${pact_key} ]; then run_train=${pact_trainer} run_export=${pact_export} flag_quant=True elif [ ${trainer} = "${fpgm_key}" ]; then run_train=${fpgm_trainer} run_export=${fpgm_export} elif [ ${trainer} = "${distill_key}" ]; then run_train=${distill_trainer} run_export=${distill_export} elif [ ${trainer} = ${trainer_key1} ]; then run_train=${trainer_value1} run_export=${export_value1} elif [[ ${trainer} = ${trainer_key2} ]]; then run_train=${trainer_value2} run_export=${export_value2} else run_train=${norm_trainer} run_export=${norm_export} fi if [ ${run_train} = "null" ]; then continue fi set_autocast=$(func_set_params "${autocast_key}" "${autocast}") set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}") set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}") set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}") set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}") set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}") save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}" # load pretrain from norm training if current trainer is pact or fpgm trainer if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then set_pretrain="${load_norm_train_model}" fi set_save_model=$(func_set_params "${save_model_key}" "${save_log}") if [ ${#gpu} -le 2 ];then # train with cpu or single gpu cmd="${python} ${run_train} ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1} " elif [ ${#gpu} -le 15 ];then # train with multi-gpu cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_autocast} ${set_batchsize} ${set_train_params1}" else # train with multi-machine cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1}" fi # run train eval "unset CUDA_VISIBLE_DEVICES" eval $cmd status_check $? "${cmd}" "${status_log}" set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") # save norm trained models to set pretrain for pact training and fpgm training if [ ${trainer} = ${trainer_norm} ]; then load_norm_train_model=${set_eval_pretrain} fi # run eval if [ ${eval_py} != "null" ]; then set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" eval $eval_cmd status_check $? "${eval_cmd}" "${status_log}" fi # run export model if [ ${run_export} != "null" ]; then # run export model save_infer_path="${save_log}" export_cmd="${python} ${run_export} ${export_weight}=${save_log}/${train_model_name} ${save_infer_key}=${save_infer_path}" eval $export_cmd status_check $? "${export_cmd}" "${status_log}" #run inference eval $env save_infer_path="${save_log}" func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" eval "unset CUDA_VISIBLE_DEVICES" fi done # done with: for trainer in ${trainer_list[*]}; do done # done with: for autocast in ${autocast_list[*]}; do done # done with: for gpu in ${gpu_list[*]}; do fi # end if [ ${MODE} = "infer" ]; then