# PicoDet ![](../../docs/images/picedet_demo.jpeg) ## Introduction We developed a series of lightweight models, which named `PicoDet`. Because of its excellent performance, it is very suitable for deployment on mobile or CPU. - 🌟 Higher mAP: The **first** model which within 1M parameter with mAP reaching 30+. - 🚀 Faster latency: 114FPS on mobile ARM CPU. - 😊 Deploy friendly: support PaddleLite/MNN/NCNN/OpenVINO and provide C++/Python/Android implementation. - 😍 Advanced algorithm: use the most advanced algorithms and innovate, such as ESNet, CSP-PAN, SimOTA with VFL, etc. ## Requirements - PaddlePaddle >= 2.1.2 - PaddleSlim >= 2.1.1 ## Comming soon - [ ] More series of model, such as Smaller or larger model. - [ ] Pretrained models for more scenarios. - [ ] More features in need. ## Model Zoo | Model | Input size | lr schedule | Box AP(0.5:0.95) | Box AP(0.5) | FLOPS | Model Size | Inference Time | download | config | | :------------------------ | :-------: | :-------: | :------: | :---: | :---: | :---: | :------------: | :-------------------------------------------------: | :-----: | | PicoDet-S | 320*320 | 300e | 27.1 | 41.4 | -- | 3.9M | -- | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_320_coco.yml) | | PicoDet-S | 416*416 | 300e | 30.6 | 45.5 | -- | 3.9M | -- | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco.yml) | | PicoDet-M | 320*320 | 300e | - | 41.2 | -- | 8.4M | -- | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_320_coco.yml) | | PicoDet-M | 416*416 | 300e | 34.3 | 49.8 | -- | 8.4M | -- | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco.pdparams) | [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_416_coco.yml) | **Notes:** - PicoDet inference speed is tested on Kirin 980 with 4 threads by arm8 and with FP16. - PicoDet is trained on COCO train2017 dataset and evaluated on val2017. - PicoDet used 4 GPUs for training and mini-batch size as 128 or 96 on each GPU. ## Citations ``` @article{li2020generalized, title={Generalized Focal Loss: Learning Qualified and Distributed Bounding Boxes for Dense Object Detection}, author={Li, Xiang and Wang, Wenhai and Wu, Lijun and Chen, Shuo and Hu, Xiaolin and Li, Jun and Tang, Jinhui and Yang, Jian}, journal={arXiv preprint arXiv:2006.04388}, year={2020} } ```