# PicoDet OpenVINO Benchmark Demo 本文件夹提供利用[Intel's OpenVINO Toolkit](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html)进行PicoDet测速的Benchmark Demo与带后处理的模型Inference Demo。 ## 安装 OpenVINO Toolkit 前往 [OpenVINO HomePage](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html),下载对应版本并安装。 本demo安装的是 OpenVINO 2022.1.0,可直接运行如下指令安装: ```shell pip install openvino==2022.1.0 ``` 详细安装步骤,可参考[OpenVINO官网](https://docs.openvinotoolkit.org/latest/get_started_guides.html) ## Benchmark测试 - 准备测试模型:根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(`-o export.benchmark=True` ),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建```out_onnxsim```文件夹,将导出的onnx模型放在该目录下。 - 准备测试所用图片:本demo默认利用PaddleDetection/demo/[000000014439.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/demo/000000014439.jpg) - 在本目录下直接运行: ```shell # Linux python openvino_benchmark.py --img_path ../../../../demo/000000014439.jpg --onnx_path out_onnxsim/picodet_s_320_coco_lcnet.onnx --in_shape 320 # Windows python openvino_benchmark.py --img_path ..\..\..\..\demo\000000014439.jpg --onnx_path out_onnxsim\picodet_s_320_coco_lcnet.onnx --in_shape 320 ``` - 注意:```--in_shape```为对应模型输入size,默认为320 ## 真实图片测试(网络包含后处理,但不包含NMS) - 准备测试模型:根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中【导出及转换模型】步骤,采用**包含后处理**但**不包含NMS**的方式导出模型(`-o export.benchmark=False export.nms=False` ),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建```out_onnxsim_infer```文件夹,将导出的onnx模型放在该目录下。 - 准备测试所用图片:默认利用../../demo_onnxruntime/imgs/[bus.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/third_engine/demo_onnxruntime/imgs/bus.jpg) ```shell # Linux python openvino_infer.py --img_path ../../demo_onnxruntime/imgs/bus.jpg --onnx_path out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx --in_shape 320 # Windows python openvino_infer.py --img_path ..\..\demo_onnxruntime\imgs\bus.jpg --onnx_path out_onnxsim_infer\picodet_s_320_postproccesed_woNMS.onnx --in_shape 320 ``` ### 真实图片测试(网络不包含后处理) ```shell # Linux python openvino_benchmark.py --benchmark 0 --img_path ../../../../demo/000000014439.jpg --onnx_path out_onnxsim/picodet_s_320_coco_lcnet.onnx --in_shape 320 # Windows python openvino_benchmark.py --benchmark 0 --img_path ..\..\..\..\demo\000000014439.jpg --onnx_path out_onnxsim\picodet_s_320_coco_lcnet.onnx --in_shape 320 ``` - 结果: