English | [简体中文](FACE_DETECTION.md) # FaceDetection ## Table of Contents - [Introduction](#Introduction) - [Benchmark and Model Zoo](#Benchmark-and-Model-Zoo) - [Quick Start](#Quick-Start) - [Data Pipline](#Data-Pipline) - [Training and Inference](#Training-and-Inference) - [Evaluation](#Evaluation) - [Algorithm Description](#Algorithm-Description) - [Contributing](#Contributing) ## Introduction The goal of FaceDetection is to provide efficient and high-speed face detection solutions, including cutting-edge and classic models. ![](../images/12_Group_Group_12_Group_Group_12_935.jpg) ## Benchmark and Model Zoo PaddleDetection Supported architectures is shown in the below table, please refer to [Algorithm Description](#Algorithm-Description) for details of the algorithm. | | Original | Lite [1](#lite) | NAS [2](#nas) | |:------------------------:|:--------:|:--------------------------:|:------------------------:| | [BlazeFace](#BlazeFace) | ✓ | ✓ | ✓ | | [FaceBoxes](#FaceBoxes) | ✓ | ✓ | x | [1] `Lite` edition means reduces the number of network layers and channels. [2] `NAS` edition means use `Neural Architecture Search` algorithm to optimized network structure. ### Model Zoo #### mAP in WIDER FACE | Architecture | Type | Size | Img/gpu | Lr schd | Easy Set | Medium Set | Hard Set | Download | |:------------:|:--------:|:----:|:-------:|:-------:|:---------:|:----------:|:---------:|:--------:| | BlazeFace | Original | 640 | 8 | 32w | **0.915** | **0.892** | **0.797** | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_original.tar) | | BlazeFace | Lite | 640 | 8 | 32w | 0.909 | 0.885 | 0.781 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_lite.tar) | | BlazeFace | NAS | 640 | 8 | 32w | 0.837 | 0.807 | 0.658 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas.tar) | | BlazeFace | NAS_V2 | 640 | 8 | 32W | 0.870 | 0.837 | 0.685 | [model](https://paddlemodels.bj.bcebos.com/object_detection/blazeface_nas2.tar) | FaceBoxes | Original | 640 | 8 | 32w | 0.878 | 0.851 | 0.576 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_original.tar) | | FaceBoxes | Lite | 640 | 8 | 32w | 0.901 | 0.875 | 0.760 | [model](https://paddlemodels.bj.bcebos.com/object_detection/faceboxes_lite.tar) | **NOTES:** - Get mAP in `Easy/Medium/Hard Set` by multi-scale evaluation in `tools/face_eval.py`. For details can refer to [Evaluation](#Evaluate-on-the-WIDER-FACE). - BlazeFace-Lite Training and Testing ues [blazeface.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/master/configs/face_detection/blazeface.yml) configs file and set `lite_edition: true`. #### mAP in FDDB | Architecture | Type | Size | DistROC | ContROC | |:------------:|:--------:|:----:|:-------:|:-------:| | BlazeFace | Original | 640 | **0.992** | **0.762** | | BlazeFace | Lite | 640 | 0.990 | 0.756 | | BlazeFace | NAS | 640 | 0.981 | 0.741 | | FaceBoxes | Original | 640 | 0.987 | 0.736 | | FaceBoxes | Lite | 640 | 0.988 | 0.751 | **NOTES:** - Get mAP by multi-scale evaluation on the FDDB dataset. For details can refer to [Evaluation](#Evaluate-on-the-FDDB). #### Infer Time and Model Size comparison | Architecture | Type | Size | P4(trt32) (ms) | CPU (ms) | Qualcomm SnapDragon 855(armv8) (ms) | Model size (MB) | |:------------:|:--------:|:----:|:--------------:|:--------:|:-------------------------------------:|:---------------:| | BlazeFace | Original | 128 | 1.387 | 23.461 | 6.036 | 0.777 | | BlazeFace | Lite | 128 | 1.323 | 12.802 | 6.193 | 0.68 | | BlazeFace | NAS | 128 | 1.03 | 6.714 | 2.7152 | 0.234 | | FaceBoxes | Original | 128 | 3.144 | 14.972 | 19.2196 | 3.6 | | FaceBoxes | Lite | 128 | 2.295 | 11.276 | 8.5278 | 2 | | BlazeFace | Original | 320 | 3.01 | 132.408 | 70.6916 | 0.777 | | BlazeFace | Lite | 320 | 2.535 | 69.964 | 69.9438 | 0.68 | | BlazeFace | NAS | 320 | 2.392 | 36.962 | 39.8086 | 0.234 | | FaceBoxes | Original | 320 | 7.556 | 84.531 | 52.1022 | 3.6 | | FaceBoxes | Lite | 320 | 18.605 | 78.862 | 59.8996 | 2 | | BlazeFace | Original | 640 | 8.885 | 519.364 | 149.896 | 0.777 | | BlazeFace | Lite | 640 | 6.988 | 284.13 | 149.902 | 0.68 | | BlazeFace | NAS | 640 | 7.448 | 142.91 | 69.8266 | 0.234 | | FaceBoxes | Original | 640 | 78.201 | 394.043 | 169.877 | 3.6 | | FaceBoxes | Lite | 640 | 59.47 | 313.683 | 139.918 | 2 | **NOTES:** - CPU: Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz. - P4(trt32) and CPU tests based on PaddlePaddle, PaddlePaddle version is 1.6.1. - ARM test environment: - Qualcomm SnapDragon 855(armv8); - Single thread; - Paddle-Lite version 2.0.0. ## Quick Start ### Data Pipline We use the [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/) to carry out the training and testing of the model, the official website gives detailed data introduction. - WIDER Face data source: Loads `wider_face` type dataset with directory structures like this: ``` dataset/wider_face/ ├── wider_face_split │ ├── wider_face_train_bbx_gt.txt │ ├── wider_face_val_bbx_gt.txt ├── WIDER_train │ ├── images │ │ ├── 0--Parade │ │ │ ├── 0_Parade_marchingband_1_100.jpg │ │ │ ├── 0_Parade_marchingband_1_381.jpg │ │ │ │ ... │ │ ├── 10--People_Marching │ │ │ ... ├── WIDER_val │ ├── images │ │ ├── 0--Parade │ │ │ ├── 0_Parade_marchingband_1_1004.jpg │ │ │ ├── 0_Parade_marchingband_1_1045.jpg │ │ │ │ ... │ │ ├── 10--People_Marching │ │ │ ... ``` - Download dataset manually: To download the WIDER FACE dataset, run the following commands: ``` cd dataset/wider_face && ./download.sh ``` - Download dataset automatically: If a training session is started but the dataset is not setup properly (e.g, not found in dataset/wider_face), PaddleDetection can automatically download them from [WIDER FACE dataset](http://shuoyang1213.me/WIDERFACE/), the decompressed datasets will be cached in ~/.cache/paddle/dataset/ and can be discovered automatically subsequently. #### Data Augmentation - **Data-anchor-sampling:** Randomly transform the scale of the image to a certain range of scales, greatly enhancing the scale change of the face. The specific operation is to obtain $v=\sqrt{width * height}$ according to the randomly selected face height and width, and judge the value of `v` in which interval of `[16,32,64,128]`. Assuming `v=45` && `32