# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle import unittest import tarfile import os import shutil proto_str = ('name: "MultiSlotDataFeed"\n' 'batch_size: 2\n' 'multi_slot_desc {\n' ' slots {\n' ' name: "words"\n' ' type: "uint64"\n' ' is_dense: false\n' ' is_used: true\n' ' }\n' ' slots {\n' ' name: "label"\n' ' type: "uint64"\n' ' is_dense: false\n' ' is_used: true\n' ' }\n' '}') URL = 'http://paddle-unittest-data.gz.bcebos.com/python_paddle_fluid_tests_demo_async-executor/train_data.tar.gz' MD5 = '2a405a31508969b3ab823f42c0f522ca' def bow_net(data, label, dict_dim=89528, emb_dim=128, hid_dim=128, hid_dim2=96, class_dim=2): """ BOW net This model is from https://github.com/PaddlePaddle/models: models/fluid/PaddleNLP/text_classification/nets.py """ # embedding emb = fluid.layers.embedding( input=data, size=[dict_dim, emb_dim], is_sparse=True) bow = fluid.layers.sequence_pool(input=emb, pool_type='sum') bowh = fluid.layers.tanh(bow) # fc layer after conv fc_1 = fluid.layers.fc(input=bowh, size=hid_dim, act="tanh") fc_2 = fluid.layers.fc(input=fc_1, size=hid_dim2, act="tanh") # probability of each class prediction = fluid.layers.fc(input=[fc_2], size=class_dim, act="softmax") # cross entropy loss cost = fluid.layers.cross_entropy(input=prediction, label=label) # mean loss avg_cost = fluid.layers.mean(x=cost) acc = fluid.layers.accuracy(input=prediction, label=label) return avg_cost, acc, prediction class TestAsyncExecutor(unittest.TestCase): def setUp(self): with open('./data.prototxt', 'w+') as f: f.write(proto_str) f.close() with tarfile.open(paddle.dataset.common.download(URL, "imdb", MD5)) as tarf: tarf.extractall(path='./') tarf.close() def test_data_feed_desc(self): data_feed = fluid.DataFeedDesc('./data.prototxt') # assertEqueal(data_feed.proto_desc.batch, 2) # assertEqual(len(data_feed.proto_desc.multi_slot_desc), 2) self.assertEqual(" ".join(data_feed.desc().split()), " ".join(proto_str.split())) def test_run(self): # Initialize dataset description data_feed = fluid.DataFeedDesc('train_data/data.prototxt') data_feed.set_batch_size( 128) # See API doc for how to change other fields # define network # input text data data = fluid.layers.data( name="words", shape=[1], dtype="int64", lod_level=1) # label data label = fluid.layers.data(name="label", shape=[1], dtype="int64") avg_cost, acc, prediction = bow_net(data, label) sgd_optimizer = fluid.optimizer.Adagrad(learning_rate=0.002) opt_ops, weight_and_grad = sgd_optimizer.minimize(avg_cost) # Run startup program startup_program = fluid.default_startup_program() place = fluid.CPUPlace() executor = fluid.Executor(place) executor.run(startup_program) main_program = fluid.default_main_program() async_executor = fluid.AsyncExecutor(place) self.assertRaises(TypeError, async_executor.run) self.assertRaises(TypeError, async_executor.run, main_program) self.assertRaises(TypeError, async_executor.run, main_program, data_feed) filelist = ['train_data/part-%d' % i for i in range(10)] self.assertRaises(TypeError, async_executor.run, main_program, data_feed, filelist) thread_num = 4 self.assertRaises(TypeError, async_executor.run, main_program, data_feed, filelist, thread_num) async_executor.run(main_program, data_feed, filelist, thread_num, [acc]) fluid.io.save_inference_model("imdb.model", [data.name, label.name], [acc], executor) statinfo = os.stat('imdb.model/__model__') self.assertGreater(statinfo.st_size, 0) os.remove('./data.prototxt') shutil.rmtree('./train_data') shutil.rmtree('./imdb.model') if __name__ == '__main__': unittest.main()