# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from scipy.optimize import linear_sum_assignment from ppdet.core.workspace import register, serializable from ..losses.iou_loss import GIoULoss from .utils import bbox_cxcywh_to_xyxy __all__ = ['HungarianMatcher'] @register @serializable class HungarianMatcher(nn.Layer): __shared__ = ['use_focal_loss'] def __init__(self, matcher_coeff={'class': 1, 'bbox': 5, 'giou': 2}, use_focal_loss=False, alpha=0.25, gamma=2.0): r""" Args: matcher_coeff (dict): The coefficient of hungarian matcher cost. """ super(HungarianMatcher, self).__init__() self.matcher_coeff = matcher_coeff self.use_focal_loss = use_focal_loss self.alpha = alpha self.gamma = gamma self.giou_loss = GIoULoss() def forward(self, boxes, logits, gt_bbox, gt_class): r""" Args: boxes (Tensor): [b, query, 4] logits (Tensor): [b, query, num_classes] gt_bbox (List(Tensor)): list[[n, 4]] gt_class (List(Tensor)): list[[n, 1]] Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = boxes.shape[:2] num_gts = sum(len(a) for a in gt_class) if num_gts == 0: return [(paddle.to_tensor( [], dtype=paddle.int64), paddle.to_tensor( [], dtype=paddle.int64)) for _ in range(bs)] # We flatten to compute the cost matrices in a batch # [batch_size * num_queries, num_classes] out_prob = F.sigmoid(logits.flatten( 0, 1)) if self.use_focal_loss else F.softmax(logits.flatten(0, 1)) # [batch_size * num_queries, 4] out_bbox = boxes.flatten(0, 1) # Also concat the target labels and boxes tgt_ids = paddle.concat(gt_class).flatten() tgt_bbox = paddle.concat(gt_bbox) # Compute the classification cost if self.use_focal_loss: neg_cost_class = (1 - self.alpha) * (out_prob**self.gamma) * (-( 1 - out_prob + 1e-8).log()) pos_cost_class = self.alpha * ( (1 - out_prob)**self.gamma) * (-(out_prob + 1e-8).log()) cost_class = paddle.gather( pos_cost_class, tgt_ids, axis=1) - paddle.gather( neg_cost_class, tgt_ids, axis=1) else: cost_class = -paddle.gather(out_prob, tgt_ids, axis=1) # Compute the L1 cost between boxes cost_bbox = ( out_bbox.unsqueeze(1) - tgt_bbox.unsqueeze(0)).abs().sum(-1) # Compute the giou cost betwen boxes cost_giou = self.giou_loss( bbox_cxcywh_to_xyxy(out_bbox.unsqueeze(1)), bbox_cxcywh_to_xyxy(tgt_bbox.unsqueeze(0))).squeeze(-1) # Final cost matrix C = self.matcher_coeff['class'] * cost_class + self.matcher_coeff['bbox'] * cost_bbox + \ self.matcher_coeff['giou'] * cost_giou C = C.reshape([bs, num_queries, -1]) C = [a.squeeze(0) for a in C.chunk(bs)] sizes = [a.shape[0] for a in gt_bbox] indices = [ linear_sum_assignment(c.split(sizes, -1)[i].numpy()) for i, c in enumerate(C) ] return [(paddle.to_tensor( i, dtype=paddle.int64), paddle.to_tensor( j, dtype=paddle.int64)) for i, j in indices]