architecture: SSD use_gpu: true max_iters: 120000 snapshot_iter: 10000 log_smooth_window: 20 log_iter: 20 metric: VOC map_type: 11point pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_caffe_pretrained.tar save_dir: output weights: output/ssd_vgg16_512_voc/model_final/ # 20(label_class) + 1(background) num_classes: 21 SSD: backbone: VGG multi_box_head: MultiBoxHead output_decoder: background_label: 0 keep_top_k: 200 nms_eta: 1.0 nms_threshold: 0.45 nms_top_k: 400 score_threshold: 0.01 VGG: depth: 16 with_extra_blocks: true normalizations: [20., -1, -1, -1, -1, -1, -1] extra_block_filters: [[256, 512, 1, 2, 3], [128, 256, 1, 2, 3], [128, 256, 1, 2, 3], [128, 256, 1, 2, 3], [128, 256, 1, 1, 4]] MultiBoxHead: base_size: 512 aspect_ratios: [[2.], [2., 3.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]] min_ratio: 20 max_ratio: 90 min_sizes: [20.0, 51.0, 133.0, 215.0, 296.0, 378.0, 460.0] max_sizes: [51.0, 133.0, 215.0, 296.0, 378.0, 460.0, 542.0] steps: [8, 16, 32, 64, 128, 256, 512] offset: 0.5 flip: true kernel_size: 3 pad: 1 LearningRate: base_lr: 0.001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [80000, 100000] - !LinearWarmup start_factor: 0.3333333333333333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 TrainReader: inputs_def: image_shape: [3, 512, 512] fields: ['image', 'gt_bbox', 'gt_class'] dataset: !VOCDataSet dataset_dir: dataset/voc anno_path: trainval.txt use_default_label: true sample_transforms: - !DecodeImage to_rgb: true - !RandomDistort brightness_lower: 0.875 brightness_upper: 1.125 is_order: true - !RandomExpand fill_value: [123, 117, 104] - !RandomCrop allow_no_crop: true - !NormalizeBox {} - !ResizeImage interp: 1 target_size: 512 use_cv2: false - !RandomFlipImage is_normalized: true - !Permute to_bgr: false - !NormalizeImage is_scale: false mean: [123, 117, 104] std: [1, 1, 1] batch_size: 8 shuffle: true worker_num: 8 bufsize: 2 use_process: true EvalReader: inputs_def: image_shape: [3, 512, 512] fields: ['image', 'gt_bbox', 'gt_class', 'im_shape', 'im_id', 'is_difficult'] dataset: !VOCDataSet anno_path: test.txt dataset_dir: dataset/voc use_default_label: true sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeBox {} - !ResizeImage interp: 1 target_size: 512 use_cv2: false - !Permute to_bgr: false - !NormalizeImage is_scale: false mean: [123, 117, 104] std: [1, 1, 1] batch_size: 32 worker_num: 8 bufsize: 2 TestReader: inputs_def: image_shape: [3,512,512] fields: ['image', 'im_id', 'im_shape'] dataset: !ImageFolder anno_path: test.txt use_default_label: true sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !ResizeImage interp: 1 max_size: 0 target_size: 512 use_cv2: false - !Permute to_bgr: false - !NormalizeImage is_scale: false mean: [123, 117, 104] std: [1, 1, 1] batch_size: 1