/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/batch_norm_op.h" #include "paddle/framework/data_layout.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using DataLayout = framework::DataLayout; template using EigenArrayMap = Eigen::Map>; template using ConstEigenArrayMap = Eigen::Map>; template using EigenVectorArrayMap = Eigen::Map>; template using ConstEigenVectorArrayMap = Eigen::Map>; class BatchNormOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), ""); PADDLE_ENFORCE(ctx->HasInput("Scale"), ""); PADDLE_ENFORCE(ctx->HasInput("Bias"), ""); PADDLE_ENFORCE(ctx->HasInput("Mean"), ""); PADDLE_ENFORCE(ctx->HasInput("Variance"), ""); PADDLE_ENFORCE(ctx->HasOutput("Y"), ""); PADDLE_ENFORCE(ctx->HasOutput("MeanOut"), ""); PADDLE_ENFORCE(ctx->HasOutput("VarianceOut"), ""); PADDLE_ENFORCE(ctx->HasOutput("SavedMean"), ""); PADDLE_ENFORCE(ctx->HasOutput("SavedVariance"), ""); // make sure Mean/MeanOut and Variance/VarianceOut share memory in Python PADDLE_ENFORCE_EQ(ctx->Inputs("Mean")[0], ctx->Outputs("MeanOut")[0], "Mean and MeanOut should share the same memory"); PADDLE_ENFORCE_EQ(ctx->Inputs("Variance")[0], ctx->Outputs("VarianceOut")[0], "Variance and VarianceOut should share the same memory"); const auto x_dims = ctx->GetInputDim("X"); const DataLayout data_layout = framework::StringToDataLayout( ctx->Attrs().Get("data_layout")); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "Input X must have 2 to 5 dimensions."); const int64_t C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias").size(), 1UL); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Bias")[0], C); ctx->SetOutputDim("Y", x_dims); ctx->SetOutputDim("MeanOut", {C}); ctx->SetOutputDim("VarianceOut", {C}); ctx->SetOutputDim("SavedMean", {C}); ctx->SetOutputDim("SavedVariance", {C}); ctx->ShareLoD("X", "Y"); } }; class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { public: BatchNormOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("is_test", "").SetDefault(false); AddAttr("momentum", "").SetDefault(0.9); AddAttr("epsilon", "") .SetDefault(1e-5) .AddCustomChecker([](const float &epsilon) { PADDLE_ENFORCE(epsilon >= 0.0f && epsilon <= 0.001f, "'epsilon' should be between 0.0 and 0.001."); }); AddAttr("data_layout", "").SetDefault("NCHW"); AddInput("X", "The input tensor"); AddInput("Scale", "Scale is a 1-dimensional tensor of size C " "that is applied to the output"); AddInput("Bias", "Bias is a 1-dimensional tensor of size C " "that is applied to the output"); AddInput("Mean", "The global mean (for training) or " "estimated mean (for testing)"); AddInput("Variance", "The global variance (for training) " "or estimated Variance (for testing)"); AddOutput("Y", "result after normalization"); AddOutput("MeanOut", "Share memory with Mean. " "Store the global mean when training"); AddOutput("VarianceOut", "Share memory with Variance. " "Store the global Variance when training"); AddOutput("SavedMean", "Mean of the current mini batch, " "will apply to output when training") .AsIntermediate(); AddOutput("SavedVariance", "Variance of the current mini batch, " "will apply to output when training") .AsIntermediate(); AddComment(R"DOC( Batch Normalization. Batch Norm has been implemented as discussed in the paper: https://arxiv.org/pdf/1502.03167.pdf Can be used as a normalizer function for conv2d and fully_connected operations. The required data format for this layer is one of the following: 1. NHWC `[batch, in_height, in_width, in_channels]` 2. NCHW `[batch, in_channels, in_height, in_width]` )DOC"); } }; template class BatchNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const float epsilon = ctx.Attr("epsilon"); const float momentum = ctx.Attr("momentum"); const bool is_test = ctx.Attr("is_test"); const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = framework::StringToDataLayout(data_layout_str); const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); const int N = x_dims[0]; const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int sample_size = x->numel() / N / C; auto *y = ctx.Output("Y"); auto *mean_out = ctx.Output("MeanOut"); auto *variance_out = ctx.Output("VarianceOut"); auto *saved_mean = ctx.Output("SavedMean"); auto *saved_variance = ctx.Output("SavedVariance"); // alloc memory y->mutable_data(ctx.GetPlace()); mean_out->mutable_data(ctx.GetPlace()); variance_out->mutable_data(ctx.GetPlace()); saved_mean->mutable_data(ctx.GetPlace()); saved_variance->mutable_data(ctx.GetPlace()); if (!is_test) { // saved_xx is use just in this batch of data EigenVectorArrayMap saved_mean_e( saved_mean->mutable_data(ctx.GetPlace()), C); EigenVectorArrayMap saved_variance_e( saved_variance->mutable_data(ctx.GetPlace()), C); saved_mean_e.setZero(); saved_variance_e.setZero(); switch (data_layout) { case DataLayout::kNCHW: { ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); for (int nc = 0; nc < N * C; ++nc) { saved_mean_e(nc % C) += x_arr.col(nc).sum(); } saved_mean_e /= N * sample_size; for (int nc = 0; nc < N * C; ++nc) { saved_variance_e(nc % C) += (x_arr.col(nc) - saved_mean_e(nc % C)).matrix().squaredNorm(); } saved_variance_e /= N * sample_size; break; } case DataLayout::kNHWC: { ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); for (int i = 0; i < N * sample_size; ++i) { saved_mean_e += x_arr.col(i); } saved_mean_e /= N * sample_size; for (int i = 0; i < N * sample_size; ++i) { saved_variance_e += (x_arr.col(i) - saved_mean_e) * (x_arr.col(i) - saved_mean_e); } saved_variance_e /= N * sample_size; break; } default: PADDLE_THROW("Unknown storage order: %s", data_layout_str); } EigenVectorArrayMap running_mean_arr( mean_out->mutable_data(ctx.GetPlace()), C); EigenVectorArrayMap running_var_arr( variance_out->mutable_data(ctx.GetPlace()), C); running_mean_arr = running_mean_arr * momentum + saved_mean_e * (1. - momentum); running_var_arr = running_var_arr * momentum + saved_variance_e * (1. - momentum); } // use SavedMean and SavedVariance to do normalize Eigen::Array inv_std(C); if (is_test) { ConstEigenVectorArrayMap var_arr( ctx.Input("Variance")->data(), C); inv_std = (var_arr + epsilon).sqrt().inverse(); } else { EigenVectorArrayMap saved_inv_std( ctx.Output("SavedVariance")->data(), C); // inverse SavedVariance first, gradient will use it too. saved_inv_std = (saved_inv_std + epsilon).inverse().sqrt(); inv_std = saved_inv_std; } ConstEigenVectorArrayMap mean_arr( is_test ? ctx.Input("Mean")->data() : ctx.Output("SavedMean")->data(), C); // ((x - est_mean) * (inv_var) * scale + bias // formula transform ====> // (x * inv_var * scale) + (bias - est_mean * inv_var * scale) const auto *scale = ctx.Input("Scale"); const auto *bias = ctx.Input("Bias"); ConstEigenVectorArrayMap scale_arr(scale->data(), C); ConstEigenVectorArrayMap bias_arr(bias->data(), C); Eigen::Array new_scale = inv_std * scale_arr; Eigen::Array new_bias = bias_arr - mean_arr * inv_std * scale_arr; switch (data_layout) { case DataLayout::kNCHW: { EigenArrayMap y_arr(y->mutable_data(ctx.GetPlace()), sample_size, N * C); ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); for (int nc = 0; nc < N * C; ++nc) { y_arr.col(nc) = x_arr.col(nc) * new_scale(nc % C) + new_bias(nc % C); } break; } case DataLayout::kNHWC: { EigenArrayMap(y->mutable_data(ctx.GetPlace()), C, N * sample_size) = (ConstEigenArrayMap(x->data(), C, N * sample_size).colwise() * new_scale) .colwise() + new_bias; break; } default: PADDLE_THROW("Unknown storage order: %d", data_layout); } } }; class BatchNormGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { // check input PADDLE_ENFORCE(ctx->HasInput("X")); PADDLE_ENFORCE(ctx->HasInput("Scale"), ""); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")), ""); PADDLE_ENFORCE(ctx->HasInput("SavedMean"), ""); PADDLE_ENFORCE(ctx->HasInput("SavedVariance"), ""); // check output PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), ""); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Scale")), ""); PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), ""); const auto x_dims = ctx->GetInputDim("X"); const DataLayout data_layout = framework::StringToDataLayout( ctx->Attrs().Get("data_layout")); const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); ctx->SetOutputDim(framework::GradVarName("X"), x_dims); ctx->SetOutputDim(framework::GradVarName("Scale"), {C}); ctx->SetOutputDim(framework::GradVarName("Bias"), {C}); } protected: framework::OpKernelType GetExpectedKernelType( const framework::ExecutionContext &ctx) const override { const auto *var = ctx.InputVar(framework::GradVarName("Y")); if (var == nullptr) { PADDLE_THROW("can't find Y@GRAD"); } const Tensor *t = nullptr; if (var->IsType()) { t = &var->Get(); } else if (var->IsType()) { t = &var->Get(); } if (t == nullptr) { PADDLE_THROW("can't find Y@GRAD"); } return framework::OpKernelType(framework::ToDataType(t->type()), ctx.GetPlace()); } }; template class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const auto *x = ctx.Input("X"); const auto *d_y = ctx.Input(framework::GradVarName("Y")); const auto *scale = ctx.Input("Scale"); const auto *saved_mean = ctx.Input("SavedMean"); // SavedVariance have been reverted in forward operator const auto *saved_inv_variance = ctx.Input("SavedVariance"); const std::string data_layout_str = ctx.Attr("data_layout"); const DataLayout data_layout = framework::StringToDataLayout(data_layout_str); // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] const auto &x_dims = x->dims(); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); const int N = x_dims[0]; const int C = (data_layout == DataLayout::kNCHW ? x_dims[1] : x_dims[x_dims.size() - 1]); const int sample_size = x->numel() / N / C; ConstEigenVectorArrayMap scale_arr(scale->data(), C); ConstEigenVectorArrayMap mean_arr(saved_mean->data(), C); ConstEigenVectorArrayMap inv_var_arr(saved_inv_variance->data(), C); // init output auto *d_x = ctx.Output(framework::GradVarName("X")); auto *d_scale = ctx.Output(framework::GradVarName("Scale")); auto *d_bias = ctx.Output(framework::GradVarName("Bias")); d_x->mutable_data(ctx.GetPlace()); d_scale->mutable_data(ctx.GetPlace()); d_bias->mutable_data(ctx.GetPlace()); // d_bias = np.sum(d_y, axis=0) // d_scale = np.sum((X - mean) / inv_std * dy, axis=0) // d_x = (1. / N) * scale * inv_var * (N * d_y - np.sum(d_y, axis=0) // - (X - mean) * inv_var * inv_var * np.sum(d_y * (X - mean), axis=0)) EigenVectorArrayMap d_bias_arr(d_bias->mutable_data(ctx.GetPlace()), C); EigenVectorArrayMap d_scale_arr(d_scale->mutable_data(ctx.GetPlace()), C); d_bias_arr.setZero(); d_scale_arr.setZero(); const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size); switch (data_layout) { case DataLayout::kNCHW: { ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); ConstEigenArrayMap d_y_arr(d_y->data(), sample_size, N * C); EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), sample_size, N * C); d_x_arr.setZero(); for (int nc = 0; nc < N * C; ++nc) { int c = nc % C; d_bias_arr(c) += d_y_arr.col(nc).sum(); d_scale_arr(c) += ((x_arr.col(nc) - mean_arr(c)) * inv_var_arr(c) * d_y_arr.col(nc)) .sum(); } for (int nc = 0; nc < N * C; ++nc) { int c = nc % C; d_x_arr.col(nc) += scale_inv_var_nhw(c) * (d_y_arr.col(nc) * N * sample_size - d_bias_arr(c) - (x_arr.col(nc) - mean_arr[c]) * d_scale_arr(c) * inv_var_arr(c)); } break; } case DataLayout::kNHWC: { ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); ConstEigenArrayMap d_y_arr(d_y->data(), C, N * sample_size); EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), C, N * sample_size); d_x_arr.setZero(); const auto d_y_row_sum = d_y_arr.rowwise().sum(); const auto x_minus_mean = x_arr.colwise() - mean_arr; const auto d_y_mul_x_minus_mean_row_sum = (d_y_arr * x_minus_mean).rowwise().sum(); const auto inv_var_sqr = inv_var_arr * inv_var_arr; for (int nhw = 0; nhw < N * sample_size; ++nhw) { d_bias_arr += d_y_arr.col(nhw); d_scale_arr += (x_arr.col(nhw) - mean_arr) * inv_var_arr * d_y_arr.col(nhw); d_x_arr.col(nhw) += scale_inv_var_nhw * (d_y_arr.col(nhw) * N * sample_size - d_y_row_sum - x_minus_mean.col(nhw) * inv_var_sqr * d_y_mul_x_minus_mean_row_sum); } break; } default: PADDLE_THROW("Unknown storage order: %s", data_layout_str); } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, batch_norm_grad, ops::BatchNormGradOp); REGISTER_OP_CPU_KERNEL( batch_norm, ops::BatchNormKernel); REGISTER_OP_CPU_KERNEL( batch_norm_grad, ops::BatchNormGradKernel);