# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr from ppdet.core.workspace import register, serializable from ..backbones.darknet import ConvBNLayer import numpy as np class YoloDetBlock(nn.Layer): def __init__(self, ch_in, channel, norm_type, name): super(YoloDetBlock, self).__init__() self.ch_in = ch_in self.channel = channel assert channel % 2 == 0, \ "channel {} cannot be divided by 2".format(channel) conv_def = [ ['conv0', ch_in, channel, 1, '.0.0'], ['conv1', channel, channel * 2, 3, '.0.1'], ['conv2', channel * 2, channel, 1, '.1.0'], ['conv3', channel, channel * 2, 3, '.1.1'], ['route', channel * 2, channel, 1, '.2'], ] self.conv_module = nn.Sequential() for idx, (conv_name, ch_in, ch_out, filter_size, post_name) in enumerate(conv_def): self.conv_module.add_sublayer( conv_name, ConvBNLayer( ch_in=ch_in, ch_out=ch_out, filter_size=filter_size, padding=(filter_size - 1) // 2, norm_type=norm_type, name=name + post_name)) self.tip = ConvBNLayer( ch_in=channel, ch_out=channel * 2, filter_size=3, padding=1, norm_type=norm_type, name=name + '.tip') def forward(self, inputs): route = self.conv_module(inputs) tip = self.tip(route) return route, tip class SPP(nn.Layer): def __init__(self, ch_in, ch_out, k, pool_size, norm_type, name): super(SPP, self).__init__() self.pool = [] for size in pool_size: pool = self.add_sublayer( '{}.pool1'.format(name), nn.MaxPool2D( kernel_size=size, stride=1, padding=size // 2, ceil_mode=False)) self.pool.append(pool) self.conv = ConvBNLayer( ch_in, ch_out, k, padding=k // 2, norm_type=norm_type, name=name) def forward(self, x): outs = [x] for pool in self.pool: outs.append(pool(x)) y = paddle.concat(outs, axis=1) y = self.conv(y) return y class DropBlock(nn.Layer): def __init__(self, block_size, keep_prob, name): super(DropBlock, self).__init__() self.block_size = block_size self.keep_prob = keep_prob self.name = name def forward(self, x): if not self.training or self.keep_prob == 1: return x else: gamma = (1. - self.keep_prob) / (self.block_size**2) for s in x.shape[2:]: gamma *= s / (s - self.block_size + 1) matrix = paddle.cast(paddle.rand(x.shape, x.dtype) < gamma, x.dtype) mask_inv = F.max_pool2d( matrix, self.block_size, stride=1, padding=self.block_size // 2) mask = 1. - mask_inv y = x * mask * (mask.numel() / mask.sum()) return y class CoordConv(nn.Layer): def __init__(self, ch_in, ch_out, filter_size, padding, norm_type, name): super(CoordConv, self).__init__() self.conv = ConvBNLayer( ch_in + 2, ch_out, filter_size=filter_size, padding=padding, norm_type=norm_type, name=name) def forward(self, x): b = x.shape[0] h = x.shape[2] w = x.shape[3] gx = paddle.arange(w, dtype='float32') / (w - 1.) * 2.0 - 1. gx = gx.reshape([1, 1, 1, w]).expand([b, 1, h, w]) gx.stop_gradient = True gy = paddle.arange(h, dtype='float32') / (h - 1.) * 2.0 - 1. gy = gy.reshape([1, 1, h, 1]).expand([b, 1, h, w]) gy.stop_gradient = True y = paddle.concat([x, gx, gy], axis=1) y = self.conv(y) return y class PPYOLODetBlock(nn.Layer): def __init__(self, cfg, name): super(PPYOLODetBlock, self).__init__() self.conv_module = nn.Sequential() for idx, (conv_name, layer, args, kwargs) in enumerate(cfg[:-1]): kwargs.update(name='{}.{}'.format(name, conv_name)) self.conv_module.add_sublayer(conv_name, layer(*args, **kwargs)) conv_name, layer, args, kwargs = cfg[-1] kwargs.update(name='{}.{}'.format(name, conv_name)) self.tip = layer(*args, **kwargs) def forward(self, inputs): route = self.conv_module(inputs) tip = self.tip(route) return route, tip @register @serializable class YOLOv3FPN(nn.Layer): __shared__ = ['norm_type'] def __init__(self, feat_channels=[1024, 768, 384], norm_type='bn'): super(YOLOv3FPN, self).__init__() assert len(feat_channels) > 0, "feat_channels length should > 0" self.feat_channels = feat_channels self.num_blocks = len(feat_channels) self.yolo_blocks = [] self.routes = [] for i in range(self.num_blocks): name = 'yolo_block.{}'.format(i) yolo_block = self.add_sublayer( name, YoloDetBlock( feat_channels[i], channel=512 // (2**i), norm_type=norm_type, name=name)) self.yolo_blocks.append(yolo_block) if i < self.num_blocks - 1: name = 'yolo_transition.{}'.format(i) route = self.add_sublayer( name, ConvBNLayer( ch_in=512 // (2**i), ch_out=256 // (2**i), filter_size=1, stride=1, padding=0, norm_type=norm_type, name=name)) self.routes.append(route) def forward(self, blocks): assert len(blocks) == self.num_blocks blocks = blocks[::-1] yolo_feats = [] for i, block in enumerate(blocks): if i > 0: block = paddle.concat([route, block], axis=1) route, tip = self.yolo_blocks[i](block) yolo_feats.append(tip) if i < self.num_blocks - 1: route = self.routes[i](route) route = F.interpolate(route, scale_factor=2.) return yolo_feats @register @serializable class PPYOLOFPN(nn.Layer): __shared__ = ['norm_type'] def __init__(self, feat_channels=[2048, 1280, 640], norm_type='bn', **kwargs): super(PPYOLOFPN, self).__init__() assert len(feat_channels) > 0, "feat_channels length should > 0" self.feat_channels = feat_channels self.num_blocks = len(feat_channels) # parse kwargs self.coord_conv = kwargs.get('coord_conv', False) self.drop_block = kwargs.get('drop_block', False) if self.drop_block: self.block_size = kwargs.get('block_size', 3) self.keep_prob = kwargs.get('keep_prob', 0.9) self.spp = kwargs.get('spp', False) if self.coord_conv: ConvLayer = CoordConv else: ConvLayer = ConvBNLayer if self.drop_block: dropblock_cfg = [[ 'dropblock', DropBlock, [self.block_size, self.keep_prob], dict() ]] else: dropblock_cfg = [] self.yolo_blocks = [] self.routes = [] for i, ch_in in enumerate(self.feat_channels): channel = 64 * (2**self.num_blocks) // (2**i) base_cfg = [ # name of layer, Layer, args ['conv0', ConvLayer, [ch_in, channel, 1]], ['conv1', ConvBNLayer, [channel, channel * 2, 3]], ['conv2', ConvLayer, [channel * 2, channel, 1]], ['conv3', ConvBNLayer, [channel, channel * 2, 3]], ['route', ConvLayer, [channel * 2, channel, 1]], ['tip', ConvLayer, [channel, channel * 2, 3]] ] for conf in base_cfg: filter_size = conf[-1][-1] conf.append(dict(padding=filter_size // 2, norm_type=norm_type)) if i == 0: if self.spp: pool_size = [5, 9, 13] spp_cfg = [[ 'spp', SPP, [channel * (len(pool_size) + 1), channel, 1], dict( pool_size=pool_size, norm_type=norm_type) ]] else: spp_cfg = [] cfg = base_cfg[0:3] + spp_cfg + base_cfg[ 3:4] + dropblock_cfg + base_cfg[4:6] else: cfg = base_cfg[0:2] + dropblock_cfg + base_cfg[2:6] name = 'yolo_block.{}'.format(i) yolo_block = self.add_sublayer(name, PPYOLODetBlock(cfg, name)) self.yolo_blocks.append(yolo_block) if i < self.num_blocks - 1: name = 'yolo_transition.{}'.format(i) route = self.add_sublayer( name, ConvBNLayer( ch_in=channel, ch_out=channel // 2, filter_size=1, stride=1, padding=0, norm_type=norm_type, name=name)) self.routes.append(route) def forward(self, blocks): assert len(blocks) == self.num_blocks blocks = blocks[::-1] yolo_feats = [] for i, block in enumerate(blocks): if i > 0: block = paddle.concat([route, block], axis=1) route, tip = self.yolo_blocks[i](block) yolo_feats.append(tip) if i < self.num_blocks - 1: route = self.routes[i](route) route = F.interpolate(route, scale_factor=2.) return yolo_feats