/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/crop_op.h" #include namespace paddle { namespace operators { using framework::Tensor; using framework::LoDTensor; class CropOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(const framework::InferShapeContext &ctx) const override { PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) of CropOp should not be null."); PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"), "Output(Out) of CropOp should not be null."); auto x_dim = ctx.Input("X")->dims(); auto Y = ctx.Input("Y"); if (Y == nullptr) { auto shape = Attr>("shape"); PADDLE_ENFORCE_EQ( int64_t(shape.size()), x_dim.size(), "Shape size should be equal to dimention size of input tensor."); std::vector tensor_shape(shape.size()); for (size_t i = 0; i < shape.size(); ++i) { tensor_shape[i] = static_cast(shape[i]); } ctx.Output("Out")->Resize(framework::make_ddim(tensor_shape)); } else { PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(Y->dims()), "Tensor rank of both CropOp's " "inputs must be same."); ctx.Output("Out")->Resize(Y->dims()); } } }; class CropOpMaker : public framework::OpProtoAndCheckerMaker { public: CropOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " "The input should be a k-D tensor(k > 0 and k < 7)"); AddInput("Y", "The input used as reference for cropping" " with the same dimension as X. "); AddOutput("Out", "The output of crop op " "with the same dimension as X."); AddAttr>("offsets", "A list describing offsets to be cropped." "The size of offsets list should be as same as " "dimension size of input X."); AddAttr>("shape", "A list describing the shape of output." "The size of shape list should be as same as " "dimension size of input X.") .SetDefault(std::vector()); AddComment(R"DOC( Crop Operator. Crop input into output, as specified by offsets and shape. There are two ways to set shape: 1. referenc input: crop input X as shape as reference input. The dimension of reference input should be as same as input X. 2. shape list: crop input X by shape described by a list. The size of shape list should be as same as dimension size of input X. The input should be a k-D tensor(k > 0 and k < 7). As an example: Given: X = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] [0, 0, 0, 0, 0]] and offsets = [0, 1] and shape = [2, 2] then we get Out = [[1, 2], [3, 4]] )DOC"); } }; class CropOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(const framework::InferShapeContext &ctx) const override { PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null"); PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); auto x_dims = ctx.Input("X")->dims(); auto *x_grad = ctx.Output(framework::GradVarName("X")); if (x_grad != nullptr) { x_grad->Resize(x_dims); } } }; int64_t transIndex(std::vector out_shape, std::vector x_shape, std::vector> crop_rules, size_t index) { int64_t dim_size = out_shape.size(); std::vector pos(dim_size); for (int64_t i = out_shape.size() - 1; i >= 0; --i) { pos[i] = (index % out_shape[i]) + crop_rules[i].first; index = index / out_shape[i]; } size_t result = pos[0]; for (size_t i = 1; i < x_shape.size(); ++i) { result = result * x_shape[i] + pos[i]; } return result; } template class CropCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto *x = context.Input("X"); auto *out = context.Output("Out"); auto x_data = x->data(); T *out_data = out->mutable_data(context.GetPlace()); auto x_dims = x->dims(); auto out_dims = out->dims(); int64_t out_count = out->numel(); std::vector x_shape = framework::vectorize(x_dims); std::vector out_shape = framework::vectorize(out_dims); auto offsets = context.Attr>("offsets"); PADDLE_ENFORCE_EQ( x_dims.size(), offsets.size(), "Offsets size should be equal to dimension size of input tensor."); std::vector> crop_rules(x_dims.size()); for (size_t i = 0; i < crop_rules.size(); ++i) { crop_rules[i].first = offsets[i]; crop_rules[i].second = x_dims[i] - out_dims[i] - offsets[i]; } for (int64_t i = 0; i < out_count; ++i) { out_data[i] = x_data[transIndex(out_shape, x_shape, crop_rules, i)]; } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad); REGISTER_OP_CPU_KERNEL(crop, ops::CropCPUKernel); REGISTER_OP_CPU_KERNEL(crop_grad, ops::CropGradKernel);