# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is based on https://github.com/xingyizhou/CenterTrack/blob/master/src/lib/utils/tracker.py """ import copy import numpy as np import sklearn from ppdet.core.workspace import register, serializable from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = ['CenterTracker'] @register @serializable class CenterTracker(object): __shared__ = ['num_classes'] def __init__(self, num_classes=1, min_box_area=0, vertical_ratio=-1, track_thresh=0.4, pre_thresh=0.5, new_thresh=0.4, out_thresh=0.4, hungarian=False): self.num_classes = num_classes self.min_box_area = min_box_area self.vertical_ratio = vertical_ratio self.track_thresh = track_thresh self.pre_thresh = max(track_thresh, pre_thresh) self.new_thresh = max(track_thresh, new_thresh) self.out_thresh = max(track_thresh, out_thresh) self.hungarian = hungarian self.reset() def init_track(self, results): print('Initialize tracking!') for item in results: if item['score'] > self.new_thresh: self.id_count += 1 item['tracking_id'] = self.id_count if not ('ct' in item): bbox = item['bbox'] item['ct'] = [(bbox[0] + bbox[2]) / 2, (bbox[1] + bbox[3]) / 2] self.tracks.append(item) def reset(self): self.id_count = 0 self.tracks = [] def update(self, results, public_det=None): N = len(results) M = len(self.tracks) dets = np.array([det['ct'] + det['tracking'] for det in results], np.float32) # N x 2 track_size = np.array([((track['bbox'][2] - track['bbox'][0]) * \ (track['bbox'][3] - track['bbox'][1])) \ for track in self.tracks], np.float32) # M track_cat = np.array([track['class'] for track in self.tracks], np.int32) # M item_size = np.array([((item['bbox'][2] - item['bbox'][0]) * \ (item['bbox'][3] - item['bbox'][1])) \ for item in results], np.float32) # N item_cat = np.array([item['class'] for item in results], np.int32) # N tracks = np.array([pre_det['ct'] for pre_det in self.tracks], np.float32) # M x 2 dist = (((tracks.reshape(1, -1, 2) - \ dets.reshape(-1, 1, 2)) ** 2).sum(axis=2)) # N x M invalid = ((dist > track_size.reshape(1, M)) + \ (dist > item_size.reshape(N, 1)) + \ (item_cat.reshape(N, 1) != track_cat.reshape(1, M))) > 0 dist = dist + invalid * 1e18 if self.hungarian: item_score = np.array([item['score'] for item in results], np.float32) dist[dist > 1e18] = 1e18 from sklearn.utils.linear_assignment_ import linear_assignment matched_indices = linear_assignment(dist) else: matched_indices = greedy_assignment(copy.deepcopy(dist)) unmatched_dets = [d for d in range(dets.shape[0]) \ if not (d in matched_indices[:, 0])] unmatched_tracks = [d for d in range(tracks.shape[0]) \ if not (d in matched_indices[:, 1])] if self.hungarian: matches = [] for m in matched_indices: if dist[m[0], m[1]] > 1e16: unmatched_dets.append(m[0]) unmatched_tracks.append(m[1]) else: matches.append(m) matches = np.array(matches).reshape(-1, 2) else: matches = matched_indices ret = [] for m in matches: track = results[m[0]] track['tracking_id'] = self.tracks[m[1]]['tracking_id'] ret.append(track) # Private detection: create tracks for all un-matched detections for i in unmatched_dets: track = results[i] if track['score'] > self.new_thresh: self.id_count += 1 track['tracking_id'] = self.id_count ret.append(track) self.tracks = ret return ret def greedy_assignment(dist): matched_indices = [] if dist.shape[1] == 0: return np.array(matched_indices, np.int32).reshape(-1, 2) for i in range(dist.shape[0]): j = dist[i].argmin() if dist[i][j] < 1e16: dist[:, j] = 1e18 matched_indices.append([i, j]) return np.array(matched_indices, np.int32).reshape(-1, 2)