# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import copy import numpy as np try: from collections.abc import Sequence except Exception: from collections import Sequence from paddle.io import Dataset from ppdet.core.workspace import register, serializable from ppdet.utils.download import get_dataset_path from ppdet.data import source from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) @serializable class DetDataset(Dataset): """ Load detection dataset. Args: dataset_dir (str): root directory for dataset. image_dir (str): directory for images. anno_path (str): annotation file path. data_fields (list): key name of data dictionary, at least have 'image'. sample_num (int): number of samples to load, -1 means all. use_default_label (bool): whether to load default label list. repeat (int): repeat times for dataset, use in benchmark. """ def __init__(self, dataset_dir=None, image_dir=None, anno_path=None, data_fields=['image'], sample_num=-1, use_default_label=None, repeat=1, **kwargs): super(DetDataset, self).__init__() self.dataset_dir = dataset_dir if dataset_dir is not None else '' self.anno_path = anno_path self.image_dir = image_dir if image_dir is not None else '' self.data_fields = data_fields self.sample_num = sample_num self.use_default_label = use_default_label self.repeat = repeat self._epoch = 0 self._curr_iter = 0 def __len__(self, ): return len(self.roidbs) * self.repeat def __call__(self, *args, **kwargs): return self def __getitem__(self, idx): n = len(self.roidbs) if self.repeat > 1: idx %= n # data batch roidb = copy.deepcopy(self.roidbs[idx]) if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch: idx = np.random.randint(n) roidb = [roidb, copy.deepcopy(self.roidbs[idx])] elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch: idx = np.random.randint(n) roidb = [roidb, copy.deepcopy(self.roidbs[idx])] elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch: roidb = [roidb, ] + [ copy.deepcopy(self.roidbs[np.random.randint(n)]) for _ in range(4) ] elif self.pre_img_epoch == 0 or self._epoch < self.pre_img_epoch: # Add previous image as input, only used in CenterTrack idx_pre_img = idx - 1 if idx_pre_img < 0: idx_pre_img = idx + 1 roidb = [roidb, ] + [copy.deepcopy(self.roidbs[idx_pre_img])] if isinstance(roidb, Sequence): for r in roidb: r['curr_iter'] = self._curr_iter else: roidb['curr_iter'] = self._curr_iter self._curr_iter += 1 return self.transform(roidb) def check_or_download_dataset(self): self.dataset_dir = get_dataset_path(self.dataset_dir, self.anno_path, self.image_dir) def set_kwargs(self, **kwargs): self.mixup_epoch = kwargs.get('mixup_epoch', -1) self.cutmix_epoch = kwargs.get('cutmix_epoch', -1) self.mosaic_epoch = kwargs.get('mosaic_epoch', -1) self.pre_img_epoch = kwargs.get('pre_img_epoch', -1) def set_transform(self, transform): self.transform = transform def set_epoch(self, epoch_id): self._epoch = epoch_id def parse_dataset(self, ): raise NotImplementedError( "Need to implement parse_dataset method of Dataset") def get_anno(self): if self.anno_path is None: return return os.path.join(self.dataset_dir, self.anno_path) def _is_valid_file(f, extensions=('.jpg', '.jpeg', '.png', '.bmp')): return f.lower().endswith(extensions) def _make_dataset(dir): dir = os.path.expanduser(dir) if not os.path.isdir(dir): raise ('{} should be a dir'.format(dir)) images = [] for root, _, fnames in sorted(os.walk(dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root, fname) if _is_valid_file(path): images.append(path) return images @register @serializable class ImageFolder(DetDataset): def __init__(self, dataset_dir=None, image_dir=None, anno_path=None, sample_num=-1, use_default_label=None, **kwargs): super(ImageFolder, self).__init__( dataset_dir, image_dir, anno_path, sample_num=sample_num, use_default_label=use_default_label) self._imid2path = {} self.roidbs = None self.sample_num = sample_num def check_or_download_dataset(self): return def get_anno(self): if self.anno_path is None: return if self.dataset_dir: return os.path.join(self.dataset_dir, self.anno_path) else: return self.anno_path def parse_dataset(self, ): if not self.roidbs: self.roidbs = self._load_images() def _parse(self): image_dir = self.image_dir if not isinstance(image_dir, Sequence): image_dir = [image_dir] images = [] for im_dir in image_dir: if os.path.isdir(im_dir): im_dir = os.path.join(self.dataset_dir, im_dir) images.extend(_make_dataset(im_dir)) elif os.path.isfile(im_dir) and _is_valid_file(im_dir): images.append(im_dir) return images def _load_images(self): images = self._parse() ct = 0 records = [] for image in images: assert image != '' and os.path.isfile(image), \ "Image {} not found".format(image) if self.sample_num > 0 and ct >= self.sample_num: break rec = {'im_id': np.array([ct]), 'im_file': image} self._imid2path[ct] = image ct += 1 records.append(rec) assert len(records) > 0, "No image file found" return records def get_imid2path(self): return self._imid2path def set_images(self, images): self.image_dir = images self.roidbs = self._load_images() def set_slice_images(self, images, slice_size=[640, 640], overlap_ratio=[0.25, 0.25]): self.image_dir = images ori_records = self._load_images() try: import sahi from sahi.slicing import slice_image except Exception as e: logger.error( 'sahi not found, plaese install sahi. ' 'for example: `pip install sahi`, see https://github.com/obss/sahi.' ) raise e sub_img_ids = 0 ct = 0 ct_sub = 0 records = [] for i, ori_rec in enumerate(ori_records): im_path = ori_rec['im_file'] slice_image_result = sahi.slicing.slice_image( image=im_path, slice_height=slice_size[0], slice_width=slice_size[1], overlap_height_ratio=overlap_ratio[0], overlap_width_ratio=overlap_ratio[1]) sub_img_num = len(slice_image_result) for _ind in range(sub_img_num): im = slice_image_result.images[_ind] rec = { 'image': im, 'im_id': np.array([sub_img_ids + _ind]), 'h': im.shape[0], 'w': im.shape[1], 'ori_im_id': np.array([ori_rec['im_id'][0]]), 'st_pix': np.array( slice_image_result.starting_pixels[_ind], dtype=np.float32), 'is_last': 1 if _ind == sub_img_num - 1 else 0, } if 'image' in self.data_fields else {} records.append(rec) ct_sub += sub_img_num ct += 1 logger.info('{} samples and slice to {} sub_samples.'.format(ct, ct_sub)) self.roidbs = records def get_label_list(self): # Only VOC dataset needs label list in ImageFold return self.anno_path @register class CommonDataset(object): def __init__(self, **dataset_args): super(CommonDataset, self).__init__() dataset_args = copy.deepcopy(dataset_args) type = dataset_args.pop("name") self.dataset = getattr(source, type)(**dataset_args) def __call__(self): return self.dataset @register class TrainDataset(CommonDataset): pass @register class EvalMOTDataset(CommonDataset): pass @register class TestMOTDataset(CommonDataset): pass @register class EvalDataset(CommonDataset): pass @register class TestDataset(CommonDataset): pass