_BASE_: [ '_base_/optimizer_70e.yml', '_base_/centertrack_dla34.yml', '_base_/centertrack_reader.yml', '../../runtime.yml', ] log_iter: 20 snapshot_epoch: 5 weights: output/centertrack_dla34_70e_mot17half/model_final pretrain_weights: https://bj.bcebos.com/v1/paddledet/models/pretrained/crowdhuman_centertrack.pdparams ### for Detection eval.py/infer.py # mot_metric: False # metric: COCO ### for MOT eval_mot.py/infer_mot_mot.py mot_metric: True metric: MOT worker_num: 4 TrainReader: batch_size: 16 # total 32 for 2 GPUs EvalReader: batch_size: 1 EvalMOTReader: batch_size: 1 # COCO style dataset for training num_classes: 1 TrainDataset: !COCODataSet dataset_dir: dataset/mot/MOT17 anno_path: annotations/train_half.json image_dir: images/train data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd', 'gt_track_id'] # add 'gt_track_id', the boxes annotations of json file should have 'gt_track_id' EvalDataset: !COCODataSet dataset_dir: dataset/mot/MOT17 anno_path: annotations/val_half.json image_dir: images/train TestDataset: !ImageFolder dataset_dir: dataset/mot/MOT17 anno_path: annotations/val_half.json # for MOT evaluation # If you want to change the MOT evaluation dataset, please modify 'data_root' EvalMOTDataset: !MOTImageFolder dataset_dir: dataset/mot/MOT17 data_root: images/half keep_ori_im: True # set True if save visualization images or video, or used in SDE MOT # for MOT video inference TestMOTDataset: !MOTImageFolder dataset_dir: dataset/mot/MOT17 keep_ori_im: True # set True if save visualization images or video