简体中文 | [English](README_en.md)
# 旋转框检测
## 内容
- [简介](#简介)
- [模型库](#模型库)
- [数据准备](#数据准备)
- [安装依赖](#安装依赖)
## 简介
旋转框常用于检测带有角度信息的矩形框,即矩形框的宽和高不再与图像坐标轴平行。相较于水平矩形框,旋转矩形框一般包括更少的背景信息。旋转框检测常用于遥感等场景中。
## 模型库
| 模型 | mAP | 学习率策略 | 角度表示 | 数据增广 | GPU数目 | 每GPU图片数目 | 模型下载 | 配置文件 |
|:---:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
| [S2ANet](./s2anet/README.md) | 73.84 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
**注意:**
- 如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。
- 模型库中的模型默认使用单尺度训练单尺度测试。如果数据增广一栏标明MS,意味着使用多尺度训练和多尺度测试。如果数据增广一栏标明RR,意味着使用RandomRotate数据增广进行训练。
## 数据准备
### DOTA数据准备
DOTA数据集是一个大规模的遥感图像数据集,包含旋转框和水平框的标注。可以从[DOTA数据集官网](https://captain-whu.github.io/DOTA/)下载数据集并解压,解压后的数据集目录结构如下所示:
```
${DOTA_ROOT}
├── test
│ └── images
├── train
│ ├── images
│ └── labelTxt
└── val
├── images
└── labelTxt
```
对于有标注的数据,每一张图片会对应一个同名的txt文件,文件中每一行为一个旋转框的标注,其格式如下:
```
x1 y1 x2 y2 x3 y3 x4 y4 class_name difficult
```
### 单尺度切图
DOTA数据集分辨率较高,因此一般在训练和测试之前对图像进行离线切图,使用单尺度进行切图可以使用以下命令:
``` bash
# 对于有标注的数据进行切图
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
--output_dir ${OUTPUT_DIR}/trainval1024/ \
--coco_json_file DOTA_trainval1024.json \
--subsize 1024 \
--gap 200 \
--rates 1.0
# 对于无标注的数据进行切图需要设置--image_only
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/test/ \
--output_dir ${OUTPUT_DIR}/test1024/ \
--coco_json_file DOTA_test1024.json \
--subsize 1024 \
--gap 200 \
--rates 1.0 \
--image_only
```
### 多尺度切图
使用多尺度进行切图可以使用以下命令:
``` bash
# 对于有标注的数据进行切图
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
--output_dir ${OUTPUT_DIR}/trainval/ \
--coco_json_file DOTA_trainval1024.json \
--subsize 1024 \
--gap 500 \
--rates 0.5 1.0 1.5
# 对于无标注的数据进行切图需要设置--image_only
python configs/rotate/tools/prepare_data.py \
--input_dirs ${DOTA_ROOT}/test/ \
--output_dir ${OUTPUT_DIR}/test1024/ \
--coco_json_file DOTA_test1024.json \
--subsize 1024 \
--gap 500 \
--rates 0.5 1.0 1.5 \
--image_only
```
## 安装依赖
旋转框检测模型需要依赖外部算子进行训练,评估等。Linux环境下,你可以执行以下命令进行编译安装
```
cd ppdet/ext_op
python setup.py install
```
Windows环境请按照如下步骤安装:
(1)准备Visual Studio (版本需要>=Visual Studio 2015 update3),这里以VS2017为例;
(2)点击开始-->Visual Studio 2017-->适用于 VS 2017 的x64本机工具命令提示;
(3)设置环境变量:`set DISTUTILS_USE_SDK=1`
(4)进入`PaddleDetection/ppdet/ext_op`目录,通过`python setup.py install`命令进行安装。
安装完成后,可以执行`ppdet/ext_op/unittest`下的单测验证外部op是否正确安装