_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', './_base_/optimizer_300e.yml', './_base_/yolox_cspdarknet.yml', './_base_/yolox_reader.yml' ] depth_mult: 0.33 width_mult: 0.25 log_iter: 100 snapshot_epoch: 10 weights: output/yolox_nano_300e_coco/model_final ### model config: # Note: YOLOX-nano use depthwise conv in backbone, neck and head. YOLOX: backbone: CSPDarkNet neck: YOLOCSPPAN head: YOLOXHead size_stride: 32 size_range: [10, 20] # multi-scale range [320*320 ~ 640*640] CSPDarkNet: arch: "X" return_idx: [2, 3, 4] depthwise: True YOLOCSPPAN: depthwise: True YOLOXHead: depthwise: True ### reader config: # Note: YOLOX-tiny/nano uses 416*416 for evaluation and inference. # And multi-scale training setting is in model config, TrainReader's operators use 640*640 as default. worker_num: 4 TrainReader: sample_transforms: - Decode: {} - Mosaic: prob: 0.5 # 1.0 in YOLOX-tiny/s/m/l/x input_dim: [640, 640] degrees: [-10, 10] scale: [0.5, 1.5] # [0.1, 2.0] in YOLOX-s/m/l/x shear: [-2, 2] translate: [-0.1, 0.1] enable_mixup: False # True in YOLOX-s/m/l/x - AugmentHSV: {is_bgr: False, hgain: 5, sgain: 30, vgain: 30} - PadResize: {target_size: 640} - RandomFlip: {} batch_transforms: - Permute: {} batch_size: 8 shuffle: True drop_last: True collate_batch: False mosaic_epoch: 285 EvalReader: sample_transforms: - Decode: {} - Resize: {target_size: 416, keep_ratio: True} - Pad: {size: 416, fill_value: [114., 114., 114.]} - Permute: {} batch_size: 8 TestReader: inputs_def: image_shape: [3, 416, 416] sample_transforms: - Decode: {} - Resize: {target_size: 416, keep_ratio: True} - Pad: {size: 416, fill_value: [114., 114., 114.]} - Permute: {} batch_size: 1