/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "ModelConfig.pb.h" #include "paddle/gserver/layers/DataLayer.h" #include "paddle/trainer/Trainer.h" #include "LayerGradUtil.h" #include "paddle/testing/TestUtil.h" using namespace paddle; // NOLINT DECLARE_int32(gpu_id); DECLARE_bool(thread_local_rand_use_global_seed); struct SingleBeamExpansion { vector seqStartPos; vector subSeqStartPos; vector candidateScores; // TODO(caoying): store this into Argument.ids vector selectedIndices; vector groundTruth; vector labelSeqStartPos; }; void genCandidateScores(bool hasSubSeq, vector& scores, vector& seqStartPos, vector& subSeqStartPos) {} void genSelectedIndicesAndGroundtruth(size_t beamSize, vector& seqStartPos, vector& selectedIndices) {} SingleBeamExpansion genOneBeam(size_t beamSize, bool hasSubSeq) { SingleBeamExpansion beam; genCandidateScores( hasSubSeq, beam.candidateScores, beam.seqStartPos, beam.subSeqStartPos); genSelectedIndicesAndGroundtruth( beamSize, hasSubSeq ? beam.subSeqStartPos : beam.seqStartPos, beam.selectedIndices); return beam; } void genRandomBeamExpansion(size_t expansionCount, size_t beamSize, vector& beamExpansions) { beamExpansions.clear(); for (size_t i = 0; i < expansionCount; ++i) { beamExpansions.emplace_back(genOneBeam(beamSize, i)); } } void testCrossEntropyOverBeam(bool useGpu) { TestConfig config; config.layerConfig.set_type("cross_entropy_over_beam"); const size_t expansionCount = 3; const size_t beamSize = 3; vector beams; genRandomBeamExpansion(expansionCount, beamSize, beams); size_t seqNum = 0; for (size_t i = 0; i < beams.size(); ++i) { const SingleBeamExpansion& beam = beams[i]; // create scores for all the candidates MatrixPtr candidateScorePtr = Matrix::create(beam.candidateScores.size(), 1, false, false); candidateScorePtr->copyFrom(beam.candidateScores.data(), beam.candidateScores.size()); ostringstream paramName; paramName << "candidate_scores_" << i; if (beam.subSeqStartPos.size()) { seqNum = beam.subSeqStartPos.size() - 1; config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, paramName.str(), candidateScorePtr, beam.seqStartPos, beam.subSeqStartPos}); } else { seqNum = beam.seqStartPos.size() - 1; config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, paramName.str(), candidateScorePtr, beam.seqStartPos}); } config.layerConfig.add_inputs(); // create indices for the selected candidates MatrixPtr selectedCandidates = Matrix::create(seqNum, beamSize, false, false); selectedCandidates->copyFrom(beam.selectedIndices.data(), beam.selectedIndices.size()); paramName.clear(); paramName << "selected_candidates_" << i; config.inputDefs.push_back( {INPUT_SELF_DEFINE_DATA, paramName.str(), selectedCandidates}); config.layerConfig.add_inputs(); // create the ground truth paramName.clear(); paramName << "label_" << i; config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, paramName.str(), beam.groundTruth, beam.labelSeqStartPos}); } testLayerGrad( config, "cross_entropy_over_beam", seqNum, false, useGpu, false); } TEST(Layer, CrossEntropyOverBeam) { for (bool useGpu : {false, true}) testCrossEntropyOverBeam(useGpu); } int main(int argc, char** argv) { initMain(argc, argv); hl_start(); hl_init(FLAGS_gpu_id); FLAGS_thread_local_rand_use_global_seed = true; srand(1); testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }