# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from . import prune from . import quant from . import distill from . import unstructured_prune from .prune import * from .quant import * from .distill import * from .unstructured_prune import * from .ofa import * import yaml from ppdet.core.workspace import load_config from ppdet.utils.checkpoint import load_pretrain_weight def build_slim_model(cfg, slim_cfg, mode='train'): with open(slim_cfg) as f: slim_load_cfg = yaml.load(f, Loader=yaml.Loader) if mode != 'train' and slim_load_cfg['slim'] == 'Distill': return cfg if slim_load_cfg['slim'] == 'Distill': model = DistillModel(cfg, slim_cfg) cfg['model'] = model elif slim_load_cfg['slim'] == 'OFA': load_config(slim_cfg) model = create(cfg.architecture) load_pretrain_weight(model, cfg.weights) slim = create(cfg.slim) cfg['slim_type'] = cfg.slim cfg['model'] = slim(model, model.state_dict()) cfg['slim'] = slim elif slim_load_cfg['slim'] == 'DistillPrune': if mode == 'train': model = DistillModel(cfg, slim_cfg) pruner = create(cfg.pruner) pruner(model.student_model) else: model = create(cfg.architecture) weights = cfg.weights load_config(slim_cfg) pruner = create(cfg.pruner) model = pruner(model) load_pretrain_weight(model, weights) cfg['model'] = model cfg['slim_type'] = cfg.slim elif slim_load_cfg['slim'] == 'PTQ': model = create(cfg.architecture) load_config(slim_cfg) load_pretrain_weight(model, cfg.weights) slim = create(cfg.slim) cfg['slim_type'] = cfg.slim cfg['model'] = slim(model) cfg['slim'] = slim elif slim_load_cfg['slim'] == 'UnstructuredPruner': load_config(slim_cfg) slim = create(cfg.slim) cfg['slim_type'] = cfg.slim cfg['slim'] = slim cfg['unstructured_prune'] = True else: load_config(slim_cfg) model = create(cfg.architecture) if mode == 'train': load_pretrain_weight(model, cfg.pretrain_weights) slim = create(cfg.slim) cfg['slim_type'] = cfg.slim # TODO: fix quant export model in framework. if mode == 'test' and slim_load_cfg['slim'] == 'QAT': slim.quant_config['activation_preprocess_type'] = None cfg['model'] = slim(model) cfg['slim'] = slim if mode != 'train': load_pretrain_weight(cfg['model'], cfg.weights) return cfg