/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/data_type.h" #include "paddle/operators/math/math_function.h" namespace paddle { namespace operators { namespace math { template void SetConstant::operator()(const platform::DeviceContext& context, framework::Tensor* tensor, T num) { auto t = framework::EigenVector::Flatten(*tensor); t.device(*context.GetEigenDevice()) = t.constant(static_cast(num)); } template void Transpose::operator()( const platform::DeviceContext& context, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { Eigen::array permute; for (int i = 0; i < Rank; i++) { permute[i] = axis[i]; } auto in_dim = in.dims(); auto out_dim = out->dims(); auto eigen_in = framework::EigenTensor::From(in); auto eigen_out = framework::EigenTensor::From(*out); auto* dev = context.GetEigenDevice(); eigen_out.device(*dev) = eigen_in.shuffle(permute); } template void RowwiseAdd::operator()(const platform::DeviceContext& context, const framework::Tensor& input, const framework::Tensor& vector, framework::Tensor* output) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(vector.numel(), size); PADDLE_ENFORCE_EQ(output->dims(), in_dims); auto in = framework::EigenMatrix::From(input); auto vec = framework::EigenMatrix::From(vector); auto out = framework::EigenMatrix::From(*output); Eigen::array shape({{1, static_cast(size)}}); Eigen::array bcast({{static_cast(in_dims[0]), 1}}); out.device(*context.GetEigenDevice()) = in + vec.reshape(shape).broadcast(bcast); } template void ColwiseSum::operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor* vector) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(vector->numel(), size); auto vec = framework::EigenMatrix::From(*vector); auto in = framework::EigenMatrix::From(input); Eigen::array shape({{1, static_cast(size)}}); vec.reshape(shape).device(*context.GetEigenDevice()) = in.sum(Eigen::array({{0}})).reshape(shape); } template void RowwiseSum::operator()(const platform::DeviceContext& context, const framework::Tensor& input, framework::Tensor* vector) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[1]; PADDLE_ENFORCE_EQ(vector->numel(), size); auto in = framework::EigenMatrix::From(input); auto vec = framework::EigenMatrix::From(*vector); Eigen::array shape({{static_cast(size), 1}}); vec.reshape(shape).device(*context.GetEigenDevice()) = in.sum(Eigen::array({{0}})).reshape(shape); } } // namespace math } // namespace operators } // namespace paddle