/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "gflags/gflags.h" #include "paddle/contrib/inference/paddle_inference_api_impl.h" #include "paddle/fluid/inference/tests/test_helper.h" DEFINE_string(dirname, "", "Directory of the inference model."); namespace paddle { PaddleTensor LodTensorToPaddleTensor(framework::LoDTensor* t) { PaddleTensor pt; pt.data.data = t->data(); if (t->type() == typeid(int64_t)) { pt.data.length = t->numel() * sizeof(int64_t); pt.dtype = PaddleDType::INT64; } else if (t->type() == typeid(float)) { pt.data.length = t->numel() * sizeof(float); pt.dtype = PaddleDType::FLOAT32; } else { LOG(FATAL) << "unsupported type."; } pt.shape = framework::vectorize2int(t->dims()); return pt; } NativeConfig GetConfig() { NativeConfig config; config.model_dir = FLAGS_dirname + "word2vec.inference.model"; LOG(INFO) << "dirname " << config.model_dir; config.fraction_of_gpu_memory = 0.15; config.use_gpu = true; config.device = 0; return config; } TEST(paddle_inference_api_impl, word2vec) { NativeConfig config = GetConfig(); auto predictor = CreatePaddlePredictor(config); framework::LoDTensor first_word, second_word, third_word, fourth_word; framework::LoD lod{{0, 1}}; int64_t dict_size = 2073; // The size of dictionary SetupLoDTensor(&first_word, lod, static_cast(0), dict_size - 1); SetupLoDTensor(&second_word, lod, static_cast(0), dict_size - 1); SetupLoDTensor(&third_word, lod, static_cast(0), dict_size - 1); SetupLoDTensor(&fourth_word, lod, static_cast(0), dict_size - 1); std::vector paddle_tensor_feeds; paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&first_word)); paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&second_word)); paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&third_word)); paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&fourth_word)); std::vector outputs; ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs)); ASSERT_EQ(outputs.size(), 1UL); size_t len = outputs[0].data.length; float* data = static_cast(outputs[0].data.data); for (int j = 0; j < len / sizeof(float); ++j) { ASSERT_LT(data[j], 1.0); ASSERT_GT(data[j], -1.0); } std::vector cpu_feeds; cpu_feeds.push_back(&first_word); cpu_feeds.push_back(&second_word); cpu_feeds.push_back(&third_word); cpu_feeds.push_back(&fourth_word); framework::LoDTensor output1; std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); TestInference(config.model_dir, cpu_feeds, cpu_fetchs1); float* lod_data = output1.data(); for (size_t i = 0; i < output1.numel(); ++i) { EXPECT_LT(lod_data[i] - data[i], 1e-3); EXPECT_GT(lod_data[i] - data[i], -1e-3); } free(outputs[0].data.data); } TEST(paddle_inference_api_impl, image_classification) { int batch_size = 2; bool use_mkldnn = false; bool repeat = false; NativeConfig config = GetConfig(); config.model_dir = FLAGS_dirname + "image_classification_resnet.inference.model"; const bool is_combined = false; std::vector> feed_target_shapes = GetFeedTargetShapes(config.model_dir, is_combined); framework::LoDTensor input; // Use normilized image pixels as input data, // which should be in the range [0.0, 1.0]. feed_target_shapes[0][0] = batch_size; framework::DDim input_dims = framework::make_ddim(feed_target_shapes[0]); SetupTensor( &input, input_dims, static_cast(0), static_cast(1)); std::vector cpu_feeds; cpu_feeds.push_back(&input); framework::LoDTensor output1; std::vector cpu_fetchs1; cpu_fetchs1.push_back(&output1); TestInference(config.model_dir, cpu_feeds, cpu_fetchs1, repeat, is_combined, use_mkldnn); auto predictor = CreatePaddlePredictor(config); std::vector paddle_tensor_feeds; paddle_tensor_feeds.push_back(LodTensorToPaddleTensor(&input)); std::vector outputs; ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs)); ASSERT_EQ(outputs.size(), 1UL); size_t len = outputs[0].data.length; float* data = static_cast(outputs[0].data.data); float* lod_data = output1.data(); for (size_t j = 0; j < len / sizeof(float); ++j) { EXPECT_NEAR(lod_data[j], data[j], 1e-3); } free(data); } } // namespace paddle