// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include // for setprecision #include #include #include "keypoint_detector.h" namespace PaddleDetection { // Visualiztion MaskDetector results cv::Mat VisualizeKptsResult(const cv::Mat& img, const std::vector& results, const std::vector& colormap, float threshold) { const int edge[][2] = {{0, 1}, {0, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 10}, {5, 11}, {6, 12}, {11, 13}, {12, 14}, {13, 15}, {14, 16}, {11, 12}}; cv::Mat vis_img = img.clone(); for (int batchid = 0; batchid < results.size(); batchid++) { for (int i = 0; i < results[batchid].num_joints; i++) { if (results[batchid].keypoints[i * 3] > threshold) { int x_coord = int(results[batchid].keypoints[i * 3 + 1]); int y_coord = int(results[batchid].keypoints[i * 3 + 2]); cv::circle(vis_img, cv::Point2d(x_coord, y_coord), 1, cv::Scalar(0, 0, 255), 2); } } for (int i = 0; i < results[batchid].num_joints; i++) { if (results[batchid].keypoints[edge[i][0] * 3] > threshold && results[batchid].keypoints[edge[i][1] * 3] > threshold) { int x_start = int(results[batchid].keypoints[edge[i][0] * 3 + 1]); int y_start = int(results[batchid].keypoints[edge[i][0] * 3 + 2]); int x_end = int(results[batchid].keypoints[edge[i][1] * 3 + 1]); int y_end = int(results[batchid].keypoints[edge[i][1] * 3 + 2]); cv::line(vis_img, cv::Point2d(x_start, y_start), cv::Point2d(x_end, y_end), colormap[i], 1); } } } return vis_img; } void KeyPointDetector::Postprocess(std::vector& output, std::vector& output_shape, std::vector& idxout, std::vector& idx_shape, std::vector* result, std::vector>& center_bs, std::vector>& scale_bs) { std::vector preds(output_shape[1] * 3, 0); for (int batchid = 0; batchid < output_shape[0]; batchid++) { get_final_preds(output, output_shape, idxout, idx_shape, center_bs[batchid], scale_bs[batchid], preds, batchid, this->use_dark()); KeyPointResult result_item; result_item.num_joints = output_shape[1]; result_item.keypoints.clear(); for (int i = 0; i < output_shape[1]; i++) { result_item.keypoints.emplace_back(preds[i * 3]); result_item.keypoints.emplace_back(preds[i * 3 + 1]); result_item.keypoints.emplace_back(preds[i * 3 + 2]); } result->push_back(result_item); } } void KeyPointDetector::Predict(const std::vector imgs, std::vector>& center_bs, std::vector>& scale_bs, std::vector* result) { int batch_size = imgs.size(); KeyPointDet_interpreter->resizeTensor(input_tensor, {batch_size, 3, in_h, in_w}); KeyPointDet_interpreter->resizeSession(KeyPointDet_session); auto insize = 3 * in_h * in_w; // Preprocess image cv::Mat resized_im; for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) { cv::Mat im = imgs.at(bs_idx); cv::resize(im, resized_im, cv::Size(in_w, in_h)); std::shared_ptr pretreat( MNN::CV::ImageProcess::create( MNN::CV::BGR, MNN::CV::RGB, mean_vals, 3, norm_vals, 3)); pretreat->convert( resized_im.data, in_w, in_h, resized_im.step[0], input_tensor); } // Run predictor auto inference_start = std::chrono::steady_clock::now(); KeyPointDet_interpreter->runSession(KeyPointDet_session); // Get output tensor auto out_tensor = KeyPointDet_interpreter->getSessionOutput( KeyPointDet_session, "conv2d_441.tmp_1"); auto nchwoutTensor = new Tensor(out_tensor, Tensor::CAFFE); out_tensor->copyToHostTensor(nchwoutTensor); auto output_shape = nchwoutTensor->shape(); // Calculate output length int output_size = 1; for (int j = 0; j < output_shape.size(); ++j) { output_size *= output_shape[j]; } output_data_.resize(output_size); std::copy_n(nchwoutTensor->host(), output_size, output_data_.data()); delete nchwoutTensor; auto idx_tensor = KeyPointDet_interpreter->getSessionOutput( KeyPointDet_session, "argmax_0.tmp_0"); auto idxhostTensor = new Tensor(idx_tensor, Tensor::CAFFE); idx_tensor->copyToHostTensor(idxhostTensor); auto idx_shape = idxhostTensor->shape(); // Calculate output length output_size = 1; for (int j = 0; j < idx_shape.size(); ++j) { output_size *= idx_shape[j]; } idx_data_.resize(output_size); std::copy_n(idxhostTensor->host(), output_size, idx_data_.data()); delete idxhostTensor; auto inference_end = std::chrono::steady_clock::now(); std::chrono::duration elapsed = inference_end - inference_start; printf("keypoint inference time: %f s\n", elapsed.count()); // Postprocessing result Postprocess(output_data_, output_shape, idx_data_, idx_shape, result, center_bs, scale_bs); } } // namespace PaddleDetection