// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/details/broadcast_op_handle.h" #include "gtest/gtest.h" #include "paddle/fluid/platform/device_context.h" namespace f = paddle::framework; namespace p = paddle::platform; // test data amount const f::DDim kDims = {20, 20}; class BroadcastTester : public ::testing::Test { public: void InitCtx(bool use_gpu) { if (use_gpu) { #ifdef PADDLE_WITH_CUDA int count = p::GetCUDADeviceCount(); if (count <= 1) { LOG(WARNING) << "Cannot test multi-gpu Broadcast, because the CUDA " "device count is " << count; exit(0); } for (int i = 0; i < count; ++i) { auto p = p::CUDAPlace(i); gpu_list_.push_back(p); ctxs_.emplace_back(new p::CUDADeviceContext(p)); } #else PADDLE_THROW("CUDA is not support."); #endif } else { int count = 8; for (int i = 0; i < count; ++i) { auto p = p::CPUPlace(); gpu_list_.push_back(p); ctxs_.emplace_back(new p::CPUDeviceContext(p)); } } } template void BroadcastInitOp(int input_scope_idx) { for (size_t j = 0; j < gpu_list_.size(); ++j) { local_scope_.push_back(&g_scope_.NewScope()); auto* out_var = local_scope_[j]->Var("out"); out_var->GetMutable(); } auto* in_var = local_scope_[input_scope_idx]->Var("input"); in_var->GetMutable(); bc_op_handle_ = new f::details::BroadcastOpHandle(local_scope_, gpu_list_); f::details::VarHandle* in_var_handle = new f::details::VarHandle(); in_var_handle->place_ = gpu_list_[input_scope_idx]; in_var_handle->name_ = "input"; in_var_handle->version_ = 1; in_var_handle->scope_idx_ = input_scope_idx; in_var_handle->generated_op_ = nullptr; bc_op_handle_->AddInput(in_var_handle); for (size_t j = 0; j < gpu_list_.size(); ++j) { bc_op_handle_->dev_ctxes_[gpu_list_[j]] = ctxs_[j]; f::details::VarHandle* out_var_handle = new f::details::VarHandle(); out_var_handle->place_ = gpu_list_[j]; out_var_handle->name_ = "out"; out_var_handle->version_ = 2; out_var_handle->scope_idx_ = j; out_var_handle->generated_op_ = bc_op_handle_; bc_op_handle_->AddOutput(out_var_handle); } } void BroadcastDestroy() { for (auto in : bc_op_handle_->inputs_) { delete in; } for (auto out : bc_op_handle_->outputs_) { delete out; } delete bc_op_handle_; for (size_t j = 0; j < ctxs_.size(); ++j) { delete ctxs_[j]; } } void WaitAll() { for (size_t j = 0; j < ctxs_.size(); ++j) { ctxs_[j]->Wait(); } } void TestBroadcastLodTensor() { int input_scope_idx = 0; BroadcastInitOp(input_scope_idx); auto in_var = local_scope_[input_scope_idx]->Var("input"); auto in_lod_tensor = in_var->GetMutable(); in_lod_tensor->mutable_data(kDims, gpu_list_[input_scope_idx]); std::vector send_vector(f::product(kDims), input_scope_idx + 12); for (size_t k = 0; k < send_vector.size(); ++k) { send_vector[k] = k; } f::LoD lod{{0, 10, 20}}; paddle::framework::TensorFromVector( send_vector, *(ctxs_[input_scope_idx]), in_lod_tensor); in_lod_tensor->set_lod(lod); bc_op_handle_->Run(false); WaitAll(); p::CPUPlace cpu_place; for (size_t j = 0; j < gpu_list_.size(); ++j) { auto out_var = local_scope_[j]->Var("out"); auto out_tensor = out_var->Get(); PADDLE_ENFORCE_EQ(out_tensor.lod(), lod, "lod is not equal."); f::Tensor result_tensor; f::TensorCopy(out_tensor, cpu_place, *(ctxs_[j]), &result_tensor); float* ct = result_tensor.mutable_data(cpu_place); for (int64_t j = 0; j < f::product(kDims); ++j) { ASSERT_NEAR(ct[j], send_vector[j], 1e-5); } } BroadcastDestroy(); } void TestBroadcastSelectedRows() { int input_scope_idx = 0; BroadcastInitOp(input_scope_idx); auto in_var = local_scope_[input_scope_idx]->Var("input"); auto in_selected_rows = in_var->GetMutable(); auto value = in_selected_rows->mutable_value(); value->mutable_data(kDims, gpu_list_[input_scope_idx]); int height = kDims[0] * 2; std::vector rows{0, 1, 2, 3, 3, 0, 14, 7, 3, 1, 2, 4, 6, 3, 1, 1, 1, 1, 3, 7}; in_selected_rows->set_height(height); in_selected_rows->set_rows(rows); std::vector send_vector(f::product(kDims)); for (size_t k = 0; k < send_vector.size(); ++k) { send_vector[k] = k; } paddle::framework::TensorFromVector( send_vector, *(ctxs_[input_scope_idx]), value); bc_op_handle_->Run(false); WaitAll(); p::CPUPlace cpu_place; for (size_t j = 0; j < gpu_list_.size(); ++j) { auto out_var = local_scope_[j]->Var("out"); auto& out_select_rows = out_var->Get(); auto rt = out_select_rows.value(); PADDLE_ENFORCE_EQ(out_select_rows.height(), height, "height is not equal."); for (size_t k = 0; k < out_select_rows.rows().size(); ++k) { PADDLE_ENFORCE_EQ(out_select_rows.rows()[k], rows[k]); } f::Tensor result_tensor; f::TensorCopy(rt, cpu_place, *(ctxs_[j]), &result_tensor); float* ct = result_tensor.data(); for (int64_t j = 0; j < f::product(kDims); ++j) { ASSERT_NEAR(ct[j], send_vector[j], 1e-5); } } BroadcastDestroy(); } public: f::Scope g_scope_; std::vector ctxs_; std::vector local_scope_; std::vector gpu_list_; f::details::BroadcastOpHandle* bc_op_handle_; }; TEST_F(BroadcastTester, TestCPUBroadcastTestLodTensor) { InitCtx(false); TestBroadcastLodTensor(); } TEST_F(BroadcastTester, TestCPUBroadcastTestSelectedRows) { InitCtx(false); TestBroadcastSelectedRows(); } #ifdef PADDLE_WITH_CUDA TEST_F(BroadcastTester, TestGPUBroadcastTestLodTensor) { InitCtx(true); TestBroadcastLodTensor(); } TEST_F(BroadcastTester, TestGPUBroadcastTestSelectedRows) { InitCtx(true); TestBroadcastSelectedRows(); } #endif