# Use Case ## Local Training These command line arguments are commonly used by local training experiments, such as image classification, natural language processing, et al. ``` paddle train \ --use_gpu=1/0 \ #1:GPU,0:CPU(default:true) --config=network_config \ --save_dir=output \ --trainer_count=COUNT \ #(default:1) --test_period_while_training=M \ #(default:0) --test_batches_while_training=BATCHES \#(default:1000) --test_batches_while_end=BATCHES \ #(default:0) --num_passes=N \ #(defalut:100) --log_period=K \ #(default:100) --dot_period=1000 \ #(default:1) #[--show_parameter_stats_period=100] \ #(default:0) #[--saving_period_by_batches=200] \ #(default:0) ``` `show_parameter_stats_period` and `saving_period_by_batches` are optional according to your task. ### 1) Pass Command Argument to Network config `config_args` is a useful parameter to pass arguments to network config. ``` --config_args=generating=1,beam_size=5,layer_num=10 \ ``` And `get_config_arg` can be used to parse these arguments in network config as follows: ``` generating = get_config_arg('generating', bool, False) beam_size = get_config_arg('beam_size', int, 3) layer_num = get_config_arg('layer_num', int, 8) ``` `get_config_arg`: ``` get_config_arg(name, type, default_value) ``` - name: the name specified in the `--config_args` - type: value type, bool, int, str, float etc. - default_value: default value if not set. ### 2) Use Model to Initialize Network add argument: ``` --init_model_path=model_path --load_missing_parameter_strategy=rand ``` ## Local Testing Method 1: ``` paddle train --job=test \ --use_gpu=1/0 \ --config=network_config \ --trainer_count=COUNT \ --init_model_path=model_path \ ``` - use init\_model\_path to specify test model. - only can test one model. Method 2: ``` paddle train --job=test \ --use_gpu=1/0 \ --config=network_config \ --trainer_count=COUNT \ --model_list=model.list \ ``` - use model_list to specify test models - can test several models, where model.list likes: ``` ./alexnet_pass1 ./alexnet_pass2 ``` Method 3: ``` paddle train --job=test \ --use_gpu=1/0 \ --config=network_config \ --trainer_count=COUNT \ --save_dir=model \ --test_pass=M \ --num_passes=N \ ``` This way must use model path saved by Paddle like this: `model/pass-%5d`. Testing model is from M-th pass to (N-1)-th pass. For example: M=12 and N=14 will test `model/pass-00012` and `model/pass-00013`. ## Sparse Training Sparse training is usually used to accelerate calculation when input is sparse data with highly dimension. For example, dictionary dimension of input data is 1 million, but one sample just have several words. In paddle, sparse matrix multiplication is used in forward propagation and sparse updating is perfomed on weight updating after backward propagation. ### 1) Local training You need to set **sparse\_update=True** in network config. Check the network config documentation for more details. ### 2) cluster training Add the following argument for cluster training of a sparse model. At the same time you need to set **sparse\_remote\_update=True** in network config. Check the network config documentation for more details. ``` --ports_num_for_sparse=1 #(default: 0) ``` ## parallel_nn `parallel_nn` can be set to mixed use of GPUs and CPUs to compute layers. That is to say, you can deploy network to use a GPU to compute some layers and use a CPU to compute other layers. The other way is to split layers into different GPUs, which can **reduce GPU memory** or **use parallel computation to accelerate some layers**. If you want to use these characteristics, you need to specify device ID in network config (denote it as deviceId) and add command line argument: ``` --parallel_nn=true ``` ### case 1: Mixed Use of GPU and CPU Consider the following example: ``` #command line: paddle train --use_gpu=true --parallel_nn=true trainer_count=COUNT default_device(0) fc1=fc_layer(...) fc2=fc_layer(...) fc3=fc_layer(...,layer_attr=ExtraAttr(device=-1)) ``` - default_device(0): set default device ID to 0. This means that except the layers with device=-1, all layers will use a GPU, and the specific GPU used for each layer depends on trainer\_count and gpu\_id (0 by default). Here, layer l1 and l2 are computed on the GPU. - device=-1: use the CPU for layer l3. - trainer_count: - trainer_count=1: if gpu\_id is not set, then use the first GPU to compute layers l1 and l2. Otherwise use the GPU with gpu\_id. - trainer_count>1: use trainer\_count GPUs to compute one layer using data parallelism. For example, trainer\_count=2 means that GPUs 0 and 1 will use data parallelism to compute layer l1 and l2. ### Case 2: Specify Layers in Different Devices ``` #command line: paddle train --use_gpu=true --parallel_nn=true --trainer_count=COUNT #network: fc2=fc_layer(input=l1, layer_attr=ExtraAttr(device=0), ...) fc3=fc_layer(input=l1, layer_attr=ExtraAttr(device=1), ...) fc4=fc_layer(input=fc2, layer_attr=ExtraAttr(device=-1), ...) ``` In this case, we assume that there are 4 GPUs in one machine. - trainer_count=1: - Use GPU 0 to compute layer l2. - Use GPU 1 to compute layer l3. - Use CPU to compute layer l4. - trainer_count=2: - Use GPU 0 and 1 to compute layer l2. - Use GPU 2 and 3 to compute layer l3. - Use CPU to compute l4 in two threads. - trainer_count=4: - It will fail (note, we have assumed that there are 4 GPUs in machine), because argument `allow_only_one_model_on_one_gpu` is true by default. **Allocation of device ID when `device!=-1`**: ``` (deviceId + gpu_id + threadId * numLogicalDevices_) % numDevices_ deviceId: specified in layer. gpu_id: 0 by default. threadId: thread ID, range: 0,1,..., trainer_count-1 numDevices_: device (GPU) count in machine. numLogicalDevices_: min(max(deviceId + 1), numDevices_) ```