# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from ppdet.core.workspace import register __all__ = ['MaskRCNN'] @register class MaskRCNN(object): """ Mask R-CNN architecture, see https://arxiv.org/abs/1703.06870 Args: backbone (object): backbone instance rpn_head (object): `RPNhead` instance bbox_assigner (object): `BBoxAssigner` instance roi_extractor (object): ROI extractor instance bbox_head (object): `BBoxHead` instance mask_assigner (object): `MaskAssigner` instance mask_head (object): `MaskHead` instance fpn (object): feature pyramid network instance """ __category__ = 'architecture' __inject__ = [ 'backbone', 'rpn_head', 'bbox_assigner', 'roi_extractor', 'bbox_head', 'mask_assigner', 'mask_head', 'fpn' ] def __init__(self, backbone, rpn_head, bbox_head='BBoxHead', bbox_assigner='BBoxAssigner', roi_extractor='RoIAlign', mask_assigner='MaskAssigner', mask_head='MaskHead', rpn_only=False, fpn=None): super(MaskRCNN, self).__init__() self.backbone = backbone self.rpn_head = rpn_head self.bbox_assigner = bbox_assigner self.roi_extractor = roi_extractor self.bbox_head = bbox_head self.mask_assigner = mask_assigner self.mask_head = mask_head self.rpn_only = rpn_only self.fpn = fpn def build(self, feed_vars, mode='train'): im = feed_vars['image'] assert mode in ['train', 'test'], \ "only 'train' and 'test' mode is supported" if mode == 'train': required_fields = [ 'gt_label', 'gt_box', 'gt_mask', 'is_crowd', 'im_info' ] else: required_fields = ['im_shape', 'im_info'] for var in required_fields: assert var in feed_vars, \ "{} has no {} field".format(feed_vars, var) im_info = feed_vars['im_info'] body_feats = self.backbone(im) # FPN if self.fpn is not None: body_feats, spatial_scale = self.fpn.get_output(body_feats) # RPN proposals rois = self.rpn_head.get_proposals(body_feats, im_info, mode=mode) if mode == 'train': rpn_loss = self.rpn_head.get_loss(im_info, feed_vars['gt_box'], feed_vars['is_crowd']) outs = self.bbox_assigner( rpn_rois=rois, gt_classes=feed_vars['gt_label'], is_crowd=feed_vars['is_crowd'], gt_boxes=feed_vars['gt_box'], im_info=feed_vars['im_info']) rois = outs[0] labels_int32 = outs[1] if self.fpn is None: last_feat = body_feats[list(body_feats.keys())[-1]] roi_feat = self.roi_extractor(last_feat, rois) else: roi_feat = self.roi_extractor(body_feats, rois, spatial_scale) loss = self.bbox_head.get_loss(roi_feat, labels_int32, *outs[2:]) loss.update(rpn_loss) mask_rois, roi_has_mask_int32, mask_int32 = self.mask_assigner( rois=rois, gt_classes=feed_vars['gt_label'], is_crowd=feed_vars['is_crowd'], gt_segms=feed_vars['gt_mask'], im_info=feed_vars['im_info'], labels_int32=labels_int32) if self.fpn is None: bbox_head_feat = self.bbox_head.get_head_feat() feat = fluid.layers.gather(bbox_head_feat, roi_has_mask_int32) else: feat = self.roi_extractor( body_feats, mask_rois, spatial_scale, is_mask=True) mask_loss = self.mask_head.get_loss(feat, mask_int32) loss.update(mask_loss) total_loss = fluid.layers.sum(list(loss.values())) loss.update({'loss': total_loss}) return loss else: if self.rpn_only: im_scale = fluid.layers.slice( im_info, [1], starts=[2], ends=[3]) im_scale = fluid.layers.sequence_expand(im_scale, rois) rois = rois / im_scale return {'proposal': rois} if self.fpn is None: last_feat = body_feats[list(body_feats.keys())[-1]] roi_feat = self.roi_extractor(last_feat, rois) else: roi_feat = self.roi_extractor(body_feats, rois, spatial_scale) bbox_pred = self.bbox_head.get_prediction(roi_feat, rois, im_info, feed_vars['im_shape']) bbox_pred = bbox_pred['bbox'] # share weight bbox_shape = fluid.layers.shape(bbox_pred) bbox_size = fluid.layers.reduce_prod(bbox_shape) bbox_size = fluid.layers.reshape(bbox_size, [1, 1]) size = fluid.layers.fill_constant([1, 1], value=6, dtype='int32') cond = fluid.layers.less_than(x=bbox_size, y=size) mask_pred = fluid.layers.create_global_var( shape=[1], value=0.0, dtype='float32', persistable=False, name='mask_pred') with fluid.layers.control_flow.Switch() as switch: with switch.case(cond): fluid.layers.assign(input=bbox_pred, output=mask_pred) with switch.default(): bbox = fluid.layers.slice( bbox_pred, [1], starts=[2], ends=[6]) im_scale = fluid.layers.slice( im_info, [1], starts=[2], ends=[3]) im_scale = fluid.layers.sequence_expand(im_scale, bbox) mask_rois = bbox * im_scale if self.fpn is None: mask_feat = self.roi_extractor(last_feat, mask_rois) mask_feat = self.bbox_head.get_head_feat(mask_feat) else: mask_feat = self.roi_extractor( body_feats, mask_rois, spatial_scale, is_mask=True) mask_out = self.mask_head.get_prediction(mask_feat, bbox) fluid.layers.assign(input=mask_out, output=mask_pred) return {'bbox': bbox_pred, 'mask': mask_pred} def train(self, feed_vars): return self.build(feed_vars, 'train') def eval(self, feed_vars): return self.build(feed_vars, 'test') def test(self, feed_vars): return self.build(feed_vars, 'test')