// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #ifdef _WIN32 #include #include #elif LINUX #include #include #endif #include "include/object_detector.h" #include DEFINE_string(model_dir, "", "Path of inference model"); DEFINE_string(image_file, "", "Path of input image"); DEFINE_string(image_dir, "", "Dir of input image, `image_file` has a higher priority."); DEFINE_string(video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority."); DEFINE_int32(camera_id, -1, "Device id of camera to predict"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_double(threshold, 0.5, "Threshold of score."); DEFINE_string(output_dir, "output", "Directory of output visualization files."); DEFINE_string(run_mode, "fluid", "Mode of running(fluid/trt_fp32/trt_fp16/trt_int8)"); DEFINE_int32(gpu_id, 0, "Device id of GPU to execute"); DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark"); DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU"); DEFINE_int32(cpu_threads, 1, "Num of threads with CPU"); DEFINE_bool(use_dynamic_shape, false, "Trt use dynamic shape or not"); DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI"); DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI"); DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI"); DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, trt_calib_mode need to set True"); void PrintBenchmarkLog(std::vector det_time, int img_num){ LOG(INFO) << "----------------------- Config info -----------------------"; LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu"); LOG(INFO) << "ir_optim: " << "True"; LOG(INFO) << "enable_memory_optim: " << "True"; int has_trt = FLAGS_run_mode.find("trt"); if (has_trt >= 0) { LOG(INFO) << "enable_tensorrt: " << "True"; std::string precision = FLAGS_run_mode.substr(4, 8); LOG(INFO) << "precision: " << precision; } else { LOG(INFO) << "enable_tensorrt: " << "False"; LOG(INFO) << "precision: " << "fp32"; } LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False"); LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads; LOG(INFO) << "----------------------- Data info -----------------------"; LOG(INFO) << "batch_size: " << 1; LOG(INFO) << "input_shape: " << "dynamic shape"; LOG(INFO) << "----------------------- Model info -----------------------"; FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1); LOG(INFO) << "model_name: " << FLAGS_model_dir.substr(FLAGS_model_dir.find_last_of('/') + 1); LOG(INFO) << "----------------------- Perf info ------------------------"; LOG(INFO) << "Total number of predicted data: " << img_num << " and total time spent(s): " << std::accumulate(det_time.begin(), det_time.end(), 0); LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num << ", inference_time(ms): " << det_time[1] / img_num << ", postprocess_time(ms): " << det_time[2]; } static std::string DirName(const std::string &filepath) { auto pos = filepath.rfind(OS_PATH_SEP); if (pos == std::string::npos) { return ""; } return filepath.substr(0, pos); } static bool PathExists(const std::string& path){ #ifdef _WIN32 struct _stat buffer; return (_stat(path.c_str(), &buffer) == 0); #else struct stat buffer; return (stat(path.c_str(), &buffer) == 0); #endif // !_WIN32 } static void MkDir(const std::string& path) { if (PathExists(path)) return; int ret = 0; #ifdef _WIN32 ret = _mkdir(path.c_str()); #else ret = mkdir(path.c_str(), 0755); #endif // !_WIN32 if (ret != 0) { std::string path_error(path); path_error += " mkdir failed!"; throw std::runtime_error(path_error); } } static void MkDirs(const std::string& path) { if (path.empty()) return; if (PathExists(path)) return; MkDirs(DirName(path)); MkDir(path); } void GetAllFiles(const char *dir_name, std::vector &all_inputs) { if (NULL == dir_name) { std::cout << " dir_name is null ! " << std::endl; return; } struct stat s; lstat(dir_name, &s); if (!S_ISDIR(s.st_mode)) { std::cout << "dir_name is not a valid directory !" << std::endl; all_inputs.push_back(dir_name); return; } else { struct dirent *filename; // return value for readdir() DIR *dir; // return value for opendir() dir = opendir(dir_name); if (NULL == dir) { std::cout << "Can not open dir " << dir_name << std::endl; return; } std::cout << "Successfully opened the dir !" << std::endl; while ((filename = readdir(dir)) != NULL) { if (strcmp(filename->d_name, ".") == 0 || strcmp(filename->d_name, "..") == 0) continue; all_inputs.push_back(dir_name + std::string("/") + std::string(filename->d_name)); } } } void PredictVideo(const std::string& video_path, PaddleDetection::ObjectDetector* det) { // Open video cv::VideoCapture capture; if (FLAGS_camera_id != -1){ capture.open(FLAGS_camera_id); }else{ capture.open(video_path.c_str()); } if (!capture.isOpened()) { printf("can not open video : %s\n", video_path.c_str()); return; } // Get Video info : resolution, fps int video_width = static_cast(capture.get(CV_CAP_PROP_FRAME_WIDTH)); int video_height = static_cast(capture.get(CV_CAP_PROP_FRAME_HEIGHT)); int video_fps = static_cast(capture.get(CV_CAP_PROP_FPS)); // Create VideoWriter for output cv::VideoWriter video_out; std::string video_out_path = "output.mp4"; video_out.open(video_out_path.c_str(), 0x00000021, video_fps, cv::Size(video_width, video_height), true); if (!video_out.isOpened()) { printf("create video writer failed!\n"); return; } std::vector result; std::vector det_times; auto labels = det->GetLabelList(); auto colormap = PaddleDetection::GenerateColorMap(labels.size()); // Capture all frames and do inference cv::Mat frame; int frame_id = 0; bool is_rbox = false; while (capture.read(frame)) { if (frame.empty()) { break; } det->Predict(frame, 0.5, 0, 1, &result, &det_times); for (const auto& item : result) { if (item.rect.size() > 6){ is_rbox = true; printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3], item.rect[4], item.rect[5], item.rect[6], item.rect[7]); } else{ printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3]); } } cv::Mat out_im = PaddleDetection::VisualizeResult( frame, result, labels, colormap, is_rbox); video_out.write(out_im); frame_id += 1; } capture.release(); video_out.release(); } void PredictImage(const std::vector all_img_list, const double threshold, const bool run_benchmark, PaddleDetection::ObjectDetector* det, const std::string& output_dir = "output") { std::vector det_t = {0, 0, 0}; for (auto image_file : all_img_list) { // Open input image as an opencv cv::Mat object cv::Mat im = cv::imread(image_file, 1); // Store all detected result std::vector result; std::vector det_times; bool is_rbox = false; if (run_benchmark) { det->Predict(im, threshold, 10, 10, &result, &det_times); } else { det->Predict(im, 0.5, 0, 1, &result, &det_times); for (const auto& item : result) { if (item.rect.size() > 6){ is_rbox = true; printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3], item.rect[4], item.rect[5], item.rect[6], item.rect[7]); } else{ printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3]); } } // Visualization result auto labels = det->GetLabelList(); auto colormap = PaddleDetection::GenerateColorMap(labels.size()); cv::Mat vis_img = PaddleDetection::VisualizeResult( im, result, labels, colormap, is_rbox); std::vector compression_params; compression_params.push_back(CV_IMWRITE_JPEG_QUALITY); compression_params.push_back(95); std::string output_path(output_dir); if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) { output_path += OS_PATH_SEP; } ; output_path += image_file.substr(image_file.find_last_of('/') + 1); cv::imwrite(output_path, vis_img, compression_params); printf("Visualized output saved as %s\n", output_path.c_str()); } det_t[0] += det_times[0]; det_t[1] += det_times[1]; det_t[2] += det_times[2]; } PrintBenchmarkLog(det_t, all_img_list.size()); } int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir.empty() || (FLAGS_image_file.empty() && FLAGS_image_dir.empty() && FLAGS_video_file.empty())) { std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ " << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl; return -1; } if (!(FLAGS_run_mode == "fluid" || FLAGS_run_mode == "trt_fp32" || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) { std::cout << "run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'."; return -1; } // Load model and create a object detector PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_use_gpu, FLAGS_use_mkldnn, FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_gpu_id, FLAGS_use_dynamic_shape, FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape, FLAGS_trt_calib_mode); // Do inference on input video or image if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) { PredictVideo(FLAGS_video_file, &det); } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) { if (!PathExists(FLAGS_output_dir)) { MkDirs(FLAGS_output_dir); } std::vector all_img_list; if (!FLAGS_image_file.empty()) { all_img_list.push_back(FLAGS_image_file); } else { GetAllFiles((char *)FLAGS_image_dir.c_str(), all_img_list); } PredictImage(all_img_list, FLAGS_threshold, FLAGS_run_benchmark, &det, FLAGS_output_dir); } return 0; }