from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn from ppdet.core.workspace import register __all__ = ['BaseArch'] @register class BaseArch(nn.Layer): def __init__(self, data_format='NCHW'): super(BaseArch, self).__init__() self.data_format = data_format self.inputs = {} self.fuse_norm = False def load_meanstd(self, cfg_transform): self.scale = 1. self.mean = paddle.to_tensor([0.485, 0.456, 0.406]).reshape( (1, 3, 1, 1)) self.std = paddle.to_tensor([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1)) for item in cfg_transform: if 'NormalizeImage' in item: self.mean = paddle.to_tensor(item['NormalizeImage'][ 'mean']).reshape((1, 3, 1, 1)) self.std = paddle.to_tensor(item['NormalizeImage'][ 'std']).reshape((1, 3, 1, 1)) if item['NormalizeImage']['is_scale']: self.scale = 1. / 255. break def forward(self, inputs): if self.data_format == 'NHWC': image = inputs['image'] inputs['image'] = paddle.transpose(image, [0, 2, 3, 1]) if self.fuse_norm: image = inputs['image'] self.inputs['image'] = (image / 255. - self.mean) / self.std self.inputs['im_shape'] = inputs['im_shape'] self.inputs['scale_factor'] = inputs['scale_factor'] else: self.inputs = inputs self.model_arch() if self.training: out = self.get_loss() else: out = self.get_pred() return out def build_inputs(self, data, input_def): inputs = {} for i, k in enumerate(input_def): inputs[k] = data[i] return inputs def model_arch(self, ): pass def get_loss(self, ): raise NotImplementedError("Should implement get_loss method!") def get_pred(self, ): raise NotImplementedError("Should implement get_pred method!")